Windsor Ian W, Gold Brian, Raines Ronald T
Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139, United States.
ACS Catal. 2019 Feb 1;9(2):1464-1471. doi: 10.1021/acscatal.8b04142. Epub 2018 Nov 29.
Aspartic proteases regulate many biological processes and are prominent targets for therapeutic intervention. Structural studies have captured intermediates along the reaction pathway, including the Michaelis complex and tetrahedral intermediate. Using a Ramachandran analysis of these structures, we discovered that residues occupying the P1 and P1' positions (which flank the scissile peptide bond) adopt the dihedral angle of an inverse γ-turn and polyproline type-II helix, respectively. Computational analyses reveal that the polyproline type-II helix engenders an →* interaction in which the oxygen of the scissile peptide bond is the donor. This interaction stabilizes the negative charge that develops in the tetrahedral intermediate, much like the oxyanion hole of serine proteases. The inverse γ-turn serves to twist the scissile peptide bond, vacating the carbonyl * orbital and facilitating its hydration. These previously unappreciated interactions entail a form of substrate-assisted catalysis and offer opportunities for drug design.
天冬氨酸蛋白酶调节许多生物过程,是治疗干预的重要靶点。结构研究捕获了反应途径中的中间体,包括米氏复合物和四面体中间体。通过对这些结构进行拉氏构象分析,我们发现占据P1和P1'位置(位于可裂解肽键两侧)的残基分别采用反向γ-转角和多聚脯氨酸II型螺旋的二面角。计算分析表明,多聚脯氨酸II型螺旋产生一种→相互作用,其中可裂解肽键的氧作为供体。这种相互作用稳定了四面体中间体中产生的负电荷,类似于丝氨酸蛋白酶的氧负离子洞。反向γ-转角用于扭转可裂解肽键,腾出羰基轨道并促进其水合作用。这些以前未被认识到的相互作用构成了一种底物辅助催化形式,并为药物设计提供了机会。