Suppr超能文献

CoLD:一种用于内镜视频帧中结直肠病变的通用检测系统。

CoLD: a versatile detection system for colorectal lesions in endoscopy video-frames.

作者信息

Maroulis D E, Iakovidis D K, Karkanis S A, Karras D A

机构信息

Department of Informatics and Telecommunications, University of Athens, Panepistimiopolis, Ilisia, 15784, Athens, Greece.

出版信息

Comput Methods Programs Biomed. 2003 Feb;70(2):151-66. doi: 10.1016/s0169-2607(02)00007-x.

Abstract

In this paper, we present CoLD (colorectal lesions detector) an innovative detection system to support colorectal cancer diagnosis and detection of pre-cancerous polyps, by processing endoscopy images or video frame sequences acquired during colonoscopy. It utilizes second-order statistical features that are calculated on the wavelet transformation of each image to discriminate amongst regions of normal or abnormal tissue. An artificial neural network performs the classification of the features. CoLD integrates the feature extraction and classification algorithms under a graphical user interface, which allows both novice and expert users to utilize effectively all system's functions. It has been developed in close cooperation with gastroenterology specialists and has been tested on various colonoscopy videos. The detection accuracy of the proposed system has been estimated to be more than 95%. As it has been resulted, it can be used as a supplementary diagnostic tool for colorectal lesions.

摘要

在本文中,我们介绍了CoLD(结直肠病变检测器),这是一种创新的检测系统,通过处理结肠镜检查期间获取的内窥镜图像或视频帧序列,来支持结直肠癌的诊断以及癌前息肉的检测。它利用在每个图像的小波变换上计算的二阶统计特征,以区分正常或异常组织区域。人工神经网络对这些特征进行分类。CoLD在图形用户界面下集成了特征提取和分类算法,这使得新手和专家用户都能有效利用系统的所有功能。它是与胃肠病学专家密切合作开发的,并已在各种结肠镜检查视频上进行了测试。所提出系统的检测准确率估计超过95%。结果表明,它可作为结直肠病变的辅助诊断工具。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验