Suppr超能文献

使用计算机辅助分析对微小结直肠息肉进行准确分类。

Accurate Classification of Diminutive Colorectal Polyps Using Computer-Aided Analysis.

机构信息

Division of Gastroenterology, Tri-Service General Hospital, National Defense Medical Center, Taipei, Taiwan.

Department of Biological Science and Technology, National Chiao Tung University, Hsinchu, Taiwan; Division of Gastroenterology, Taichung Armed Forces General Hospital, Taichung, Taiwan.

出版信息

Gastroenterology. 2018 Feb;154(3):568-575. doi: 10.1053/j.gastro.2017.10.010. Epub 2017 Oct 16.

Abstract

BACKGROUND & AIMS: Narrow-band imaging is an image-enhanced form of endoscopy used to observed microstructures and capillaries of the mucosal epithelium which allows for real-time prediction of histologic features of colorectal polyps. However, narrow-band imaging expertise is required to differentiate hyperplastic from neoplastic polyps with high levels of accuracy. We developed and tested a system of computer-aided diagnosis with a deep neural network (DNN-CAD) to analyze narrow-band images of diminutive colorectal polyps.

METHODS

We collected 1476 images of neoplastic polyps and 681 images of hyperplastic polyps, obtained from the picture archiving and communications system database in a tertiary hospital in Taiwan. Histologic findings from the polyps were also collected and used as the reference standard. The images and data were used to train the DNN. A test set of images (96 hyperplastic and 188 neoplastic polyps, smaller than 5 mm), obtained from patients who underwent colonoscopies from March 2017 through August 2017, was then used to test the diagnostic ability of the DNN-CAD vs endoscopists (2 expert and 4 novice), who were asked to classify the images of the test set as neoplastic or hyperplastic. Their classifications were compared with findings from histologic analysis. The primary outcome measures were diagnostic accuracy, sensitivity, specificity, positive predictive value (PPV), negative predictive value (NPV), and diagnostic time. The accuracy, sensitivity, specificity, PPV, NPV, and diagnostic time were compared among DNN-CAD, the novice endoscopists, and the expert endoscopists. The study was designed to detect a difference of 10% in accuracy by a 2-sided McNemar test.

RESULTS

In the test set, the DNN-CAD identified neoplastic or hyperplastic polyps with 96.3% sensitivity, 78.1% specificity, a PPV of 89.6%, and a NPV of 91.5%. Fewer than half of the novice endoscopists classified polyps with a NPV of 90% (their NPVs ranged from 73.9% to 84.0%). DNN-CAD classified polyps as neoplastic or hyperplastic in 0.45 ± 0.07 seconds-shorter than the time required by experts (1.54 ± 1.30 seconds) and nonexperts (1.77 ± 1.37 seconds) (both P < .001). DNN-CAD classified polyps with perfect intra-observer agreement (kappa score of 1). There was a low level of intra-observer and inter-observer agreement in classification among endoscopists.

CONCLUSIONS

We developed a system called DNN-CAD to identify neoplastic or hyperplastic colorectal polyps less than 5 mm. The system classified polyps with a PPV of 89.6%, and a NPV of 91.5%, and in a shorter time than endoscopists. This deep-learning model has potential for not only endoscopic image recognition but for other forms of medical image analysis, including sonography, computed tomography, and magnetic resonance images.

摘要

背景与目的

窄带成像(Narrow-band imaging)是一种增强内镜技术,用于观察黏膜上皮的微观结构和毛细血管,可实时预测结直肠息肉的组织学特征。然而,需要具备窄带成像专业知识才能准确区分增生性和肿瘤性息肉。我们开发并测试了一种基于深度神经网络(DNN-CAD)的计算机辅助诊断系统,用于分析微小结直肠息肉的窄带图像。

方法

我们收集了台湾一家三级医院的图片存档和通信系统数据库中 1476 个肿瘤性息肉和 681 个增生性息肉的图像,并收集了息肉的组织学检查结果作为参考标准。然后,使用这些图像和数据来训练 DNN。从 2017 年 3 月至 2017 年 8 月接受结肠镜检查的患者中,获取了一个包含 96 个增生性息肉和 188 个肿瘤性息肉(直径小于 5 毫米)的测试集图像,用于测试 DNN-CAD 与 2 名专家和 4 名新手内镜医生的诊断能力,要求他们将测试集的图像分类为肿瘤性或增生性。并将他们的分类与组织学检查结果进行比较。主要观察指标是诊断准确性、敏感度、特异度、阳性预测值(PPV)、阴性预测值(NPV)和诊断时间。比较了 DNN-CAD、新手内镜医生和专家内镜医生之间的准确性、敏感度、特异度、PPV、NPV 和诊断时间。该研究旨在通过双侧 McNemar 检验检测准确性差异 10%。

结果

在测试集中,DNN-CAD 识别肿瘤性或增生性息肉的敏感度为 96.3%,特异度为 78.1%,PPV 为 89.6%,NPV 为 91.5%。只有不到一半的新手内镜医生的 NPV 能达到 90%(他们的 NPV 范围为 73.9%至 84.0%)。DNN-CAD 对息肉的分类耗时 0.45 ± 0.07 秒,比专家(1.54 ± 1.30 秒)和非专家(1.77 ± 1.37 秒)所需的时间都短(均 P <.001)。DNN-CAD 对息肉的分类具有完美的观察者内一致性(kappa 评分 1)。内镜医生之间的观察者内和观察者间分类一致性水平较低。

结论

我们开发了一种称为 DNN-CAD 的系统,用于识别直径小于 5 毫米的结直肠肿瘤性或增生性息肉。该系统的 PPV 为 89.6%,NPV 为 91.5%,诊断时间比内镜医生更短。这种深度学习模型不仅具有内镜图像识别的潜力,还具有其他形式的医学图像分析(包括超声、计算机断层扫描和磁共振成像)的潜力。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验