Suppr超能文献

按家庭医疗对患者进行随机分组:样本量估计、组内相关及数据分析。

Randomizing patients by family practice: sample size estimation, intracluster correlation and data analysis.

作者信息

Cosby Roxanne H, Howard Michelle, Kaczorowski Janusz, Willan Andrew R, Sellors John W

机构信息

Department of Family Medicine, McMaster University and Centre for the Evaluation of Medicines, St. Joseph's Healthcare, Hamilton, Ontario, Canada.

出版信息

Fam Pract. 2003 Feb;20(1):77-82. doi: 10.1093/fampra/20.1.77.

Abstract

BACKGROUND

Cluster randomized controlled trials increasingly are used to evaluate health interventions where patients are nested within larger clusters such as practices, hospitals or communities. Patients within a cluster may be similar to each other relative to patients in other clusters on key variables; therefore, sample size calculations and analyses of results require special statistical methods.

OBJECTIVE

The purpose of this study was to illustrate the calculations used for sample size estimation and data analysis and to provide estimates of the intraclass correlation coefficients (ICCs) for several variables using data from the Seniors Medication Assessment Research Trial (SMART), a community-based trial of pharmacists consulting to family physicians to optimize the drug therapy of older patients.

METHODS

The study was a paired cluster randomized trial, where the family physician's practice was the cluster. The sample size calculation was based on a hypothesized reduction of 15% in mean daily units of medication in the intervention group compared with the control group, using an alpha of 0.05 (one-tailed) with 80% power, and an ICC from pilot data of 0.08. ICCs were estimated from the data for several variables. The analyses comparing the two groups used a random effects model for a meta-analysis over pairs.

RESULTS

The design effect due to clustering was 2.12, resulting in an inflation in sample size from 340 patients required using individual randomization, to 720 patients using randomization of practices, with 15 patients from each of 48 practices. ICCs for medication use, health care utilization and general health were <0.1; however, the ICC for mean systolic blood pressure over the trial period was 0.199.

CONCLUSIONS

Compared with individual randomization, cluster randomization may substantially increase the sample size required to maintain adequate statistical power. The differences in ICCs among potential outcome variables reinforce the need for valid estimates to ensure proper study design.

摘要

背景

整群随机对照试验越来越多地用于评估健康干预措施,在这些试验中,患者嵌套于更大的群组中,如医疗机构、医院或社区。相对于其他群组中的患者,同一群组内的患者在关键变量上可能彼此相似;因此,样本量计算和结果分析需要特殊的统计方法。

目的

本研究的目的是说明用于样本量估计和数据分析的计算方法,并使用老年人药物评估研究试验(SMART)的数据提供几个变量的组内相关系数(ICC)估计值。SMART是一项基于社区的试验,药师向家庭医生提供咨询,以优化老年患者的药物治疗。

方法

该研究为配对整群随机试验,以家庭医生的执业机构作为群组。样本量计算基于假设干预组的日均用药量比对照组减少15%,使用α=0.05(单尾),检验效能为80%,以及来自预试验数据的ICC为0.08。从几个变量的数据中估计ICC。比较两组的分析使用随机效应模型进行配对荟萃分析。

结果

聚类导致的设计效应为2.12,使得样本量从采用个体随机化所需的340例患者增加到采用执业机构随机化的720例患者,48个执业机构各有15例患者。用药、医疗保健利用和总体健康的ICC<0.1;然而,试验期间平均收缩压的ICC为0.199。

结论

与个体随机化相比,整群随机化可能会大幅增加维持足够统计效能所需的样本量。潜在结局变量之间ICC的差异强化了获得有效估计值以确保恰当研究设计的必要性。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验