Suppr超能文献

当各处理组间的组内相关系数不同时,二分类结局的群组随机试验的功效和样本量计算。

Power and sample size calculations for cluster randomized trials with binary outcomes when intracluster correlation coefficients vary by treatment arm.

机构信息

Department of Biostatistics, Harvard T. H. Chan School of Public Health, Boston, MA, USA.

Department of Mathematics and Statistics, Vassar College, Poughkeepsie, NY, USA.

出版信息

Clin Trials. 2022 Feb;19(1):42-51. doi: 10.1177/17407745211059845. Epub 2021 Dec 8.

Abstract

BACKGROUND/AIMS: Generalized estimating equations are commonly used to fit logistic regression models to clustered binary data from cluster randomized trials. A commonly used correlation structure assumes that the intracluster correlation coefficient does not vary by treatment arm or other covariates, but the consequences of this assumption are understudied. We aim to evaluate the effect of allowing variation of the intracluster correlation coefficient by treatment or other covariates on the efficiency of analysis and show how to account for such variation in sample size calculations.

METHODS

We develop formulae for the asymptotic variance of the estimated difference in outcome between treatment arms obtained when the true exchangeable correlation structure depends on the treatment arm and the working correlation structure used in the generalized estimating equations analysis is: (i) correctly specified, (ii) independent, or (iii) exchangeable with no dependence on treatment arm. These formulae require a known distribution of cluster sizes; we also develop simplifications for the case when cluster sizes do not vary and approximations that can be used when the first two moments of the cluster size distribution are known. We then extend the results to settings with adjustment for a second binary cluster-level covariate. We provide formulae to calculate the required sample size for cluster randomized trials using these variances.

RESULTS

We show that the asymptotic variance of the estimated difference in outcome between treatment arms using these three working correlation structures is the same if all clusters have the same size, and this asymptotic variance is approximately the same when intracluster correlation coefficient values are small. We illustrate these results using data from a recent cluster randomized trial for infectious disease prevention in which the clusters are groups of households and modest in size (mean 9.6 individuals), with intracluster correlation coefficient values of 0.078 in the control arm and 0.057 in an intervention arm. In this application, we found a negligible difference between the variances calculated using structures (i) and (iii) and only a small increase (typically ) for the independent correlation structure (ii), and hence minimal effect on power or sample size requirements. The impact may be larger in other applications if there is greater variation in the ICC between treatment arms or with an additional covariate.

CONCLUSION

The common approach of fitting generalized estimating equations with an exchangeable working correlation structure with a common intracluster correlation coefficient across arms likely does not substantially reduce the power or efficiency of the analysis in the setting of a large number of small or modest-sized clusters, even if the intracluster correlation coefficient varies by treatment arm. Our formulae, however, allow formal evaluation of this and may identify situations in which variation in intracluster correlation coefficient by treatment arm or another binary covariate may have a more substantial impact on power and hence sample size requirements.

摘要

背景/目的:广义估计方程常用于拟合来自整群随机试验的聚类二分类数据的逻辑回归模型。一种常用的相关结构假设,组内相关系数不因处理臂或其他协变量而变化,但这种假设的后果尚未得到充分研究。我们旨在评估允许处理臂或其他协变量变化的组内相关系数对分析效率的影响,并展示如何在样本量计算中考虑到这种变化。

方法

我们为当真实可交换相关结构取决于处理臂且广义估计方程分析中使用的工作相关结构为:(i)正确指定,(ii)独立,或(iii)与处理臂无关的可交换时,处理臂之间的估计结果差异的渐近方差的公式。这些公式需要已知簇大小的分布;我们还为簇大小不变化的情况和当簇大小分布的前两个矩已知时可以使用的近似值开发了简化。然后,我们将结果扩展到具有对第二个二元簇级协变量调整的设置。我们提供了使用这些方差计算聚类随机试验所需样本量的公式。

结果

我们表明,当所有簇具有相同大小时,使用这三种工作相关结构估计处理臂之间的结果差异的渐近方差是相同的,并且当组内相关系数值较小时,该渐近方差也近似相同。我们使用最近一项传染病预防的聚类随机试验的数据说明了这些结果,其中聚类是家庭组,规模适中(平均 9.6 人),对照组的组内相关系数为 0.078,干预组为 0.057。在这个应用中,我们发现使用结构(i)和(iii)计算的方差之间几乎没有差异,而独立相关结构(ii)的方差只有很小的增加(通常为),因此对功效或样本量要求的影响很小。如果在处理臂之间或在另一个二元协变量方面存在更大的 ICC 变化,则这种影响可能在其他应用中更大。

结论

在大量小型或中型聚类的情况下,使用跨臂具有共同组内相关系数的可交换工作相关结构拟合广义估计方程的常见方法不太可能实质性地降低分析的功效或效率,即使组内相关系数因处理臂而异。然而,我们的公式允许对这种情况进行正式评估,并可能确定处理臂或另一个二元协变量的组内相关系数变化对功效的影响,从而对样本量要求有更大的影响。

相似文献

本文引用的文献

1
A Cluster-Randomized Trial of Hydroxychloroquine for Prevention of Covid-19.羟氯喹预防 COVID-19 的集群随机试验。
N Engl J Med. 2021 Feb 4;384(5):417-427. doi: 10.1056/NEJMoa2021801. Epub 2020 Nov 24.
8
Methods for sample size determination in cluster randomized trials.整群随机试验中样本量确定的方法。
Int J Epidemiol. 2015 Jun;44(3):1051-67. doi: 10.1093/ije/dyv113. Epub 2015 Jul 13.
9
How big should the pilot study for my cluster randomised trial be?我的整群随机试验的预试验应该有多大规模?
Stat Methods Med Res. 2016 Jun;25(3):1039-56. doi: 10.1177/0962280215588242. Epub 2015 Jun 12.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验