Suppr超能文献

心力衰竭——对我们当前兴奋-收缩偶联概念的挑战。

Heart failure -- a challenge to our current concepts of excitation-contraction coupling.

作者信息

Sjaastad Ivar, Wasserstrom J Andrew, Sejersted Ole M

机构信息

Institute for Experimental Medical Research, University of Oslo, Ullevaal University Hospital, Oslo, Norway.

出版信息

J Physiol. 2003 Jan 1;546(Pt 1):33-47. doi: 10.1113/jphysiol.2002.034728.

Abstract

Development of novel therapeutic strategies for congestive heart failure (CHF) seems to be hampered by insufficient knowledge of the molecular machinery of excitation-contraction (EC) coupling in both normal and failing hearts. Cardiac hypertrophy and failure represent a multitude of cardiac phenotypes, and available invasive and non-invasive techniques, briefly reviewed here, allow proper quantification of myocardial function in experimental models even in rats and mice. Both reduced fractional shortening and reduced velocity of contraction characterize myocardial failure. Only when myocardial function is depressed in vivo can meaningful studies be done in vitro of contractility and EC coupling. Also, we point out potential limitations with the whole cell patch clamp technique. Two main factors stand out as explanations for myocardial failure. First, a basic feature of CHF seems to be a reduced Ca(2+) load of the sarcoplasmic reticulum (SR) mainly due to a low phosphorylation level of phospholamban. Second, there seems to be a defect of the trigger mechanism of Ca(2+) release from the SR. We argue that this defect only becomes manifest in the presence of reduced Ca(2+) reuptake capacity of the SR and that it may not be solely attributable to reduced gain of the Ca(2+)-induced Ca(2+) release (CICR). We list several possible explanations for this defect that represent important avenues for future research.

摘要

由于对正常心脏和衰竭心脏中兴奋-收缩(EC)偶联分子机制的了解不足,充血性心力衰竭(CHF)新型治疗策略的开发似乎受到了阻碍。心脏肥大和衰竭代表了多种心脏表型,本文简要回顾的现有侵入性和非侵入性技术,即使在大鼠和小鼠的实验模型中也能对心肌功能进行适当量化。心肌衰竭的特征是缩短分数降低和收缩速度降低。只有当体内心肌功能受到抑制时,才能在体外对收缩性和EC偶联进行有意义的研究。此外,我们指出了全细胞膜片钳技术的潜在局限性。有两个主要因素可解释心肌衰竭。首先,CHF的一个基本特征似乎是肌浆网(SR)的Ca(2+)负荷降低,这主要是由于受磷蛋白的磷酸化水平较低。其次,似乎存在SR释放Ca(2+)的触发机制缺陷。我们认为,这种缺陷只有在SR的Ca(2+)再摄取能力降低的情况下才会显现出来,而且它可能不完全归因于Ca(2+)诱导的Ca(2+)释放(CICR)增益降低。我们列出了这种缺陷的几种可能解释,这些解释是未来研究的重要途径。

相似文献

1
Heart failure -- a challenge to our current concepts of excitation-contraction coupling.
J Physiol. 2003 Jan 1;546(Pt 1):33-47. doi: 10.1113/jphysiol.2002.034728.
2
Defective excitation-contraction coupling in hearts of rats with congestive heart failure.
Acta Physiol Scand. 2005 May;184(1):45-58. doi: 10.1111/j.1365-201X.2005.01431.x.
3
Ca flux, contractility, and excitation-contraction coupling in hypertrophic rat ventricular myocytes.
Am J Physiol. 1998 Apr;274(4):H1348-60. doi: 10.1152/ajpheart.1998.274.4.H1348.
4
Calcium-handling abnormalities underlying atrial arrhythmogenesis and contractile dysfunction in dogs with congestive heart failure.
Circ Arrhythm Electrophysiol. 2008 Jun 1;1(2):93-102. doi: 10.1161/CIRCEP.107.754788. Epub 2008 Apr 30.
5
Increased cardiomyocyte function and Ca2+ transients in mice during early congestive heart failure.
J Mol Cell Cardiol. 2007 Aug;43(2):177-86. doi: 10.1016/j.yjmcc.2007.05.004. Epub 2007 May 17.
6
Heart failure after myocardial infarction: altered excitation-contraction coupling.
Circulation. 2001 Aug 7;104(6):688-93. doi: 10.1161/hc3201.092285.
8
Cardiac sodium transport and excitation-contraction coupling.
J Mol Cell Cardiol. 2013 Aug;61:11-9. doi: 10.1016/j.yjmcc.2013.06.003. Epub 2013 Jun 14.

引用本文的文献

1
Detecting heart failure from B-mode ultrasound characterization of arterial pulse waves.
Am J Physiol Heart Circ Physiol. 2024 Jul 1;327(1):H80-H88. doi: 10.1152/ajpheart.00219.2024. Epub 2024 May 24.
3
Stress-driven cardiac calcium mishandling via a kinase-to-kinase crosstalk.
Pflugers Arch. 2021 Mar;473(3):363-375. doi: 10.1007/s00424-021-02533-2. Epub 2021 Feb 15.
4
5
Arrhythmogenic and metabolic remodelling of failing human heart.
J Physiol. 2016 Jul 15;594(14):3963-80. doi: 10.1113/JP271992. Epub 2016 Jun 12.
6
Altered calsequestrin glycan processing is common to diverse models of canine heart failure.
Mol Cell Biochem. 2013 May;377(1-2):11-21. doi: 10.1007/s11010-013-1560-7. Epub 2013 Mar 1.
7
MCARD-mediated gene transfer of GRK2 inhibitor in ovine model of acute myocardial infarction.
J Cardiovasc Transl Res. 2013 Apr;6(2):253-62. doi: 10.1007/s12265-012-9418-z. Epub 2012 Dec 1.
8
Transmural heterogeneity and remodeling of ventricular excitation-contraction coupling in human heart failure.
Circulation. 2011 May 3;123(17):1881-90. doi: 10.1161/CIRCULATIONAHA.110.989707. Epub 2011 Apr 18.
9
Enhanced basal contractility but reduced excitation-contraction coupling efficiency and beta-adrenergic reserve of hearts with increased Cav1.2 activity.
Am J Physiol Heart Circ Physiol. 2010 Aug;299(2):H519-28. doi: 10.1152/ajpheart.00265.2010. Epub 2010 Jun 11.
10
Hypersensitivity of excitation-contraction coupling in dystrophic cardiomyocytes.
Am J Physiol Heart Circ Physiol. 2009 Dec;297(6):H1992-2003. doi: 10.1152/ajpheart.00602.2009. Epub 2009 Sep 25.

本文引用的文献

2
The influence of some cations on an adenosine triphosphatase from peripheral nerves.
Biochim Biophys Acta. 1957 Feb;23(2):394-401. doi: 10.1016/0006-3002(57)90343-8.
3
Voltage-gated Ca2+ currents in the human pathophysiologic heart: a review.
Basic Res Cardiol. 2002;97 Suppl 1:I11-8. doi: 10.1007/s003950200023.
4
Regulation of myocardial contractility and cell size by distinct PI3K-PTEN signaling pathways.
Cell. 2002 Sep 20;110(6):737-49. doi: 10.1016/s0092-8674(02)00969-8.
8
Normal contractions triggered by I(Ca,L) in ventricular myocytes from rats with postinfarction CHF.
Am J Physiol Heart Circ Physiol. 2002 Sep;283(3):H1225-36. doi: 10.1152/ajpheart.00162.2001.
9
Reduced calcium tolerance in rat cardiomyocytes after myocardial infarction.
Acta Physiol Scand. 2002 Aug;175(4):261-9. doi: 10.1046/j.1365-201X.2002.00999.x.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验