Suppr超能文献

用于多尺度多孔介质中流动的统一格子玻尔兹曼方法。

Unified lattice Boltzmann method for flow in multiscale porous media.

作者信息

Kang Qinjun, Zhang Dongxiao, Chen Shiyi

机构信息

Los Alamos National Laboratory, Los Alamos, New Mexico 87545, USA.

出版信息

Phys Rev E Stat Nonlin Soft Matter Phys. 2002 Nov;66(5 Pt 2):056307. doi: 10.1103/PhysRevE.66.056307. Epub 2002 Nov 21.

Abstract

In this paper, we develop a unified lattice Boltzmann method for flow in multiscale porous media. This model not only can simulate flow in porous systems of various length scales but also can simulate flow in porous systems where multiple length scales coexist. Simulations of unidirectional steady flow through homogeneous and heterogeneous porous media both recover Darcy's law when the effects of inertial forces and Brinkman correction may be negligible. Direct use of this model on the usual computational nodes, with zero resistance on void spaces and infinite resistance on solid walls, gives results that agree well with analytical solutions. Simulations performed on a fractured porous system show that the method presented here gives very good overall permeability values for the whole fractured system. A series of simulations is performed on a simplified fractured system. The results indicate that, when the ratio of the permeability of the rock matrix to the fracture permeability calculated by the cubic law is less than 10(-4), the effects of the rock matrix flow are negligible, and the discrete-fracture models that ignore such flow are plausible. When the ratio is larger than 10(-4), the matrix flow has significant effects on the fractured system, and the assumption that the matrix is impermeable does not hold. Therefore, the use of the cubic law to calculate the fracture permeability may cause a significant error. It is also indicated that the larger the ratio of the width of the porous matrix to that of the fracture, the more significant is the error caused by using the cubic law.

摘要

在本文中,我们开发了一种用于多尺度多孔介质中流动的统一格子玻尔兹曼方法。该模型不仅可以模拟各种长度尺度的多孔系统中的流动,还可以模拟多个长度尺度共存的多孔系统中的流动。当惯性力和布林克曼修正的影响可忽略不计时,通过均质和非均质多孔介质的单向稳定流动模拟均能恢复达西定律。在通常的计算节点上直接使用该模型,孔隙空间电阻为零,固体壁面电阻为无穷大,得到的结果与解析解吻合良好。在裂隙多孔系统上进行的模拟表明,本文提出的方法能够为整个裂隙系统给出非常好的整体渗透率值。在一个简化的裂隙系统上进行了一系列模拟。结果表明,当岩石基质渗透率与按立方定律计算的裂隙渗透率之比小于10^(-4)时,岩石基质流动的影响可忽略不计,忽略这种流动的离散裂隙模型是合理的。当该比值大于10^(-4)时,基质流动对裂隙系统有显著影响,基质不可渗透的假设不成立。因此,使用立方定律计算裂隙渗透率可能会导致显著误差。还表明,多孔基质宽度与裂隙宽度之比越大,使用立方定律引起的误差就越显著。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验