Hellman Olof C, du Rivage John Blatz, Seidman David N
Department of Materials Science and Engineering, Northwestern University, Evanston, IL 60208-3108, USA.
Ultramicroscopy. 2003 May-Jun;95(1-4):199-205. doi: 10.1016/s0304-3991(02)00317-0.
The best calculation of concentration profiles, isoconcentration surfaces or Gibbsian interfacial excesses from three-dimensional atom-probe microscopy data requires a compromise between spatial positioning error and statistical sampling error. For example, sampling from larger spatial regions decreases the statistical error, but increases the error in spatial positioning. Finding the appropriate balance for a particular calculation can be tricky, especially when the three-dimensional nature of the data presents an infinite number of degrees of freedom in defining surfaces, and when the statistical error is changing from one region of a sample to another due to differences in collection efficiency or atomic density. We present some strategies for approaching these problems, focusing on efficient algorithms for generating different spatial samplings. We present a unique double-splat algorithm, in which an initial, fine-grained sampling is taken to convert the data to a regular grid, followed by a second, variable width splat, to spread the effective sampling distance to any value desired. The first sampling is time consuming for a large dataset, but needs only be performed once. The second splat is done on a regular grid, so it is efficient, and can be repeated as many times as necessary to find the correct balance of statistical and positioning error. The net effect is equivalent to a Gaussian spreading of each data point, without the necessity of calculating Gaussian coefficients for millions of data points. We show examples of isoconcentration surfaces calculated under different circumstances from the same dataset.
从三维原子探针显微镜数据中计算浓度分布、等浓度面或吉布斯界面超额的最佳方法,需要在空间定位误差和统计抽样误差之间进行权衡。例如,从较大的空间区域进行抽样会降低统计误差,但会增加空间定位误差。为特定计算找到合适的平衡可能很棘手,尤其是当数据的三维性质在定义表面时呈现出无数个自由度,并且由于收集效率或原子密度的差异,统计误差在样本的一个区域到另一个区域发生变化时。我们提出了一些解决这些问题的策略,重点是生成不同空间抽样的高效算法。我们提出了一种独特的双散斑算法,其中首先进行精细的初始抽样,将数据转换为规则网格,然后进行第二次可变宽度散斑,将有效抽样距离扩展到所需的任何值。对于大型数据集,第一次抽样很耗时,但只需要执行一次。第二次散斑是在规则网格上进行的,因此效率很高,并且可以根据需要重复多次,以找到统计误差和定位误差的正确平衡。最终效果等同于对每个数据点进行高斯扩散,而无需为数百万个数据点计算高斯系数。我们展示了从同一数据集在不同情况下计算出的等浓度面示例。