Templin Markus F, Stoll Dieter, Schrenk Monika, Traub Petra C, Vöhringer Christian F, Joos Thomas O
NMI Natural and Medical Sciences Institute, University of Tübingen, Markwiesenstrasse 55, 72770 Reutlingen, Germany.
Drug Discov Today. 2002 Aug 1;7(15):815-22. doi: 10.1016/s1359-6446(00)01910-2.
Microarray technology allows the simultaneous analysis of thousands of parameters within a single experiment. Microspots of capture molecules are immobilised in rows and columns onto a solid support and exposed to samples containing the corresponding binding molecules. Readout systems based on fluorescence, chemiluminescence, mass spectrometry, radioactivity or electrochemistry can be used to detect complex formation within each microspot. Such miniaturised and parallelised binding assays can be highly sensitive, and the extraordinary power of the method is exemplified by array-based gene expression analysis. In these systems, arrays containing immobilised DNA probes are exposed to complementary targets and the degree of hybridisation is measured. Recent developments in the field of protein microarrays show applications for enzyme-substrate, DNA-protein and different types of protein-protein interactions. This article discusses theoretical advantages and limitations of any miniaturised capture-molecule-ligand assay system and discusses how the use of protein microarrays will change diagnostic methods and genome and proteome research.
微阵列技术能够在单个实验中同时分析数千个参数。捕获分子的微点以行和列的形式固定在固体支持物上,并与含有相应结合分子的样品接触。基于荧光、化学发光、质谱、放射性或电化学的读出系统可用于检测每个微点内的复合物形成。这种小型化和平行化的结合测定可以具有高度敏感性,基于阵列的基因表达分析就例证了该方法的非凡能力。在这些系统中,含有固定化DNA探针的阵列与互补靶标接触,并测量杂交程度。蛋白质微阵列领域的最新进展显示了其在酶-底物、DNA-蛋白质和不同类型蛋白质-蛋白质相互作用方面的应用。本文讨论了任何小型化捕获分子-配体测定系统的理论优势和局限性,并探讨了蛋白质微阵列的使用将如何改变诊断方法以及基因组和蛋白质组研究。