Yamazaki Victoria, Sirenko Oksana, Schafer Robert J, Nguyen Luat, Gutsmann Thomas, Brade Lore, Groves Jay T
Synamem Corporation, 863 Mitten Road, Suite 101, Burlingame, CA 94010, USA.
BMC Biotechnol. 2005 Jun 16;5:18. doi: 10.1186/1472-6750-5-18.
Microarray technology has been used extensively over the past 10 years for assessing gene expression, and has facilitated precise genetic profiling of everything from tumors to small molecule drugs. By contrast, arraying cell membranes in a manner which preserves their ability to mediate biochemical processes has been considerably more difficult.
In this article, we describe a novel technology for generating cell membrane microarrays for performing high throughput biology. Our robotically-arrayed supported membranes are physiologically fluid, a critical property which differentiates this technology from other previous membrane systems and makes it useful for studying cellular processes on an industrialized scale. Membrane array elements consist of a solid substrate, above which resides a fluid supported lipid bilayer containing biologically-active molecules of interest. Incorporation of transmembrane proteins into the arrayed membranes enables the study of ligand/receptor binding, as well as interactions with live intact cells. The fluidity of these molecules in the planar lipid bilayer facilitates dimerization and other higher order interactions necessary for biological signaling events. In order to demonstrate the utility of our fluid membrane array technology to ligand/receptor studies, we investigated the multivalent binding of the cholera toxin B-subunit (CTB) to the membrane ganglioside GM1. We have also displayed a number of bona fide drug targets, including bacterial endotoxin (also referred to as lipopolysaccharide (LPS)) and membrane proteins important in T cell activation.
We have demonstrated the applicability of our fluid cell membrane array technology to both academic research applications and industrial drug discovery. Our technology facilitates the study of ligand/receptor interactions and cell-cell signaling, providing rich qualitative and quantitative information.
在过去十年中,微阵列技术已被广泛用于评估基因表达,并有助于对从肿瘤到小分子药物等各种物质进行精确的基因分析。相比之下,以一种保留细胞膜介导生化过程能力的方式排列细胞膜则困难得多。
在本文中,我们描述了一种用于生成细胞膜微阵列以进行高通量生物学研究的新技术。我们通过机器人排列的支持膜在生理上是流体状的,这一关键特性使该技术有别于其他先前的膜系统,并使其可用于工业化规模的细胞过程研究。膜阵列元件由一个固体基质组成,在其上方是一个流体支持的脂质双层,其中含有感兴趣的生物活性分子。将跨膜蛋白整合到排列好的膜中能够研究配体/受体结合以及与完整活细胞的相互作用。这些分子在平面脂质双层中的流动性促进了二聚化和生物信号事件所需的其他高阶相互作用。为了证明我们的流体膜阵列技术在配体/受体研究中的实用性,我们研究了霍乱毒素B亚基(CTB)与膜神经节苷脂GM1的多价结合。我们还展示了许多真正的药物靶点,包括细菌内毒素(也称为脂多糖(LPS))和在T细胞活化中起重要作用的膜蛋白。
我们已经证明了我们的流体细胞膜阵列技术在学术研究应用和工业药物发现中的适用性。我们的技术有助于研究配体/受体相互作用和细胞间信号传导,提供丰富的定性和定量信息。