Balsera Mónica, Arellano Juan B, Gutiérrez José R, Heredia Pedro, Revuelta José L, De Las Rivas Javier
Instituto de Recursos Naturales y Agrobiología, Consejo Superior de Investigaciones Científicas, Cordel de Merinas 52, Salamanca 37008, Spain.
Biochemistry. 2003 Feb 4;42(4):1000-7. doi: 10.1021/bi026575l.
The structure of PsbQ, one of the three main extrinsic proteins associated with the oxygen-evolving complex (OEC) of higher plants and green algae, is examined by Fourier transform infrared (FTIR) and circular dichroic (CD) spectroscopy and by computational structural prediction methods. This protein, together with two other lumenally bound extrinsic proteins, PsbO and PsbP, is essential for the stability and full activity of the OEC in plants. The FTIR spectra obtained in both H(2)O and D(2)O suggest a mainly alpha-helix structure on the basis of the relative areas of the constituents of the amide I and I' bands. The FTIR quantitative analyses indicate that PsbQ contains about 53% alpha-helix, 7% turns, 14% nonordered structure, and 24% beta-strand plus other beta-type extended structures. CD analyses indicate that PsbQ is a mainly alpha-helix protein (about 64%), presenting a small percentage assigned to beta-strand ( approximately 7%) and a larger amount assigned to turns and nonregular structures ( approximately 29%). Independent of the spectroscopic analyses, computational methods for protein structure prediction of PsbQ were utilized. First, a multiple alignment of 12 sequences of PsbQ was obtained after an extensive search in the public databases for protein and EST sequences. Based on this alignment, computational prediction of the secondary structure and the solvent accessibility suggest the presence of two different structural domains in PsbQ: a major C-terminal domain containing four alpha-helices and a minor N-terminal domain with a poorly defined secondary structure enriched in proline and glycine residues. The search for PsbQ analogues by fold recognition methods, not based on the secondary structure, also indicates that PsbQ is a four alpha-helix protein, most probably folding as an up-down bundle. The results obtained by both the spectroscopic and computational methods are in agreement, all indicating that PsbQ is mainly an alpha protein, and show the value of using both methodologies for protein structure investigation.
通过傅里叶变换红外光谱(FTIR)、圆二色光谱(CD)以及计算结构预测方法,对高等植物和绿藻放氧复合体(OEC)相关的三种主要外在蛋白之一的PsbQ的结构进行了研究。该蛋白与另外两种位于类囊体腔的外在蛋白PsbO和PsbP一起,对植物中OEC的稳定性和充分活性至关重要。在H₂O和D₂O中获得的FTIR光谱,基于酰胺I和I'带成分的相对面积,表明其主要为α螺旋结构。FTIR定量分析表明,PsbQ含有约53%的α螺旋、7%的转角、14%的无规结构以及24%的β链和其他β型伸展结构。CD分析表明,PsbQ主要是一种α螺旋蛋白(约64%),β链所占比例较小(约7%),转角和不规则结构所占比例较大(约29%)。除了光谱分析外,还使用了蛋白质结构预测的计算方法。首先,在公共数据库中广泛搜索蛋白质和EST序列后,获得了12个PsbQ序列的多重比对。基于此比对,二级结构和溶剂可及性的计算预测表明,PsbQ中存在两个不同的结构域:一个主要的C端结构域,包含四个α螺旋;一个较小的N端结构域,其二级结构定义不明确,富含脯氨酸和甘氨酸残基。通过不基于二级结构的折叠识别方法搜索PsbQ类似物,也表明PsbQ是一种四α螺旋蛋白,最有可能折叠成上下束状。光谱法和计算法得到的结果一致,均表明PsbQ主要是一种α蛋白,显示了使用这两种方法进行蛋白质结构研究的价值。