Mahdi Akeel A, Briggs Geoffrey S, Sharples Gary J, Wen Qin, Lloyd Robert G
Institute of Genetics, University of Nottingham, Queen's Medical Centre, Nottingham NG7 2UH, UK.
EMBO J. 2003 Feb 3;22(3):724-34. doi: 10.1093/emboj/cdg043.
RecG protein differs from other helicases analysed to atomic resolution in that it mediates strand separation via translocation on double-stranded (ds) rather than single-stranded (ss) DNA. We describe a highly conserved helical hairpin motif in RecG and show it to be important for helicase activity. It places two arginines (R609 and R630) in opposing positions within the component helices where they are stabilized by a network of hydrogen bonds involving a glutamate from helicase motif VI. We suggest that disruption of this feature, triggered by ATP hydrolysis, moves an adjacent loop structure in the dsDNA-binding channel and that a swinging arm motion of this loop drives translocation. Substitutions that reverse the charge at R609 or R630 reduce DNA unwinding and ATPase activities, and increase dsDNA binding, but do not affect branched DNA binding. Sequences forming the helical hairpin and loop structures are highly conserved in Mfd protein, a transcription-coupled DNA repair factor that also translocates on dsDNA. The possibility of type I restriction enzymes and chromatin-remodelling factors using similar structures to drive translocation on dsDNA is discussed.
RecG蛋白与其他已解析至原子分辨率的解旋酶不同,它通过在双链(ds)而非单链(ss)DNA上移位来介导链分离。我们描述了RecG中一个高度保守的螺旋发夹基序,并表明它对解旋酶活性很重要。它将两个精氨酸(R609和R630)置于组成螺旋内的相对位置,在那里它们通过涉及解旋酶基序VI中的谷氨酸的氢键网络得以稳定。我们认为,由ATP水解引发的这一特征的破坏会移动dsDNA结合通道中的相邻环结构,并且该环的摆动臂运动驱动移位。在R609或R630处反转电荷的取代会降低DNA解旋和ATP酶活性,并增加dsDNA结合,但不影响分支DNA结合。形成螺旋发夹和环结构的序列在Mfd蛋白中高度保守,Mfd蛋白是一种转录偶联DNA修复因子,也在dsDNA上移位。本文还讨论了I型限制酶和染色质重塑因子使用类似结构在dsDNA上驱动移位的可能性。