Murry Charles E, Whitney Marsha L, Reinecke Hans
Department of Pathology, University of Washington School of Medicine, Seattle, Washington 98195, USA.
J Card Fail. 2002 Dec;8(6 Suppl):S532-41. doi: 10.1054/jcaf.2002.129268.
The review aims to highlight recent advances in cardiac and skeletal muscle cell grafting for myocardial infarct repair.
Fetal and neonatal cardiomyocytes form new myocardium in normal or injured hearts, and this new myocardium differentiates toward an adult phenotype. Unfortunately, formation of new myocardium is limited by graft cell death, in large part because of ischemic injury. In contrast, skeletal myoblasts are ischemia-resistant and form larger grafts of mature skeletal muscle in the injured heart. Although contractile under field stimulation, skeletal muscle grafts do not express gap junction proteins and remain electrically insulated, suggesting they may not beat with host myocardium. When placed in coculture, however, cardiac and skeletal muscle form synchronously beating networks, where cardiomyocytes capture and pace skeletal muscle cells via intercalated disk-like structures containing gap junctions. This suggests that engineering skeletal muscle to express gap junction proteins in vivo may induce similar coupling with host myocardium. One major challenge to myocardial repair is getting sufficient graft cell mass without risking a tumor-like overgrowth. Recent experiments suggest it may be possible to control skeletal muscle graft size using a small, synthetic ligand, which activates the fibroblast growth factor signaling pathway only in genetically modified graft cells. Finally, a review of functional studies is presented that provides clear evidence that skeletal myoblast grafting is beneficial by limiting remodeling of the heart after infarction.
Given that clinical trials of skeletal myoblast grafting for myocardial repair are under way, it will be critically important to determine if these cells beat after grafting in the heart.
本综述旨在突出心脏和骨骼肌细胞移植用于心肌梗死修复的最新进展。
胎儿和新生儿心肌细胞在正常或受损心脏中形成新的心肌,并且这种新的心肌向成年表型分化。不幸的是,新心肌的形成受到移植细胞死亡的限制,这在很大程度上是由于缺血性损伤。相比之下,骨骼肌成肌细胞具有抗缺血能力,并在受损心脏中形成更大的成熟骨骼肌移植体。尽管在电场刺激下可收缩,但骨骼肌移植体不表达缝隙连接蛋白,保持电绝缘,这表明它们可能不会与宿主心肌同步搏动。然而,当置于共培养时,心脏和骨骼肌形成同步搏动网络,心肌细胞通过含有缝隙连接的闰盘样结构捕获并驱动骨骼肌细胞。这表明在体内对骨骼肌进行工程改造以表达缝隙连接蛋白可能会诱导与宿主心肌的类似耦联。心肌修复的一个主要挑战是获得足够的移植细胞量而不冒肿瘤样过度生长的风险。最近的实验表明,使用一种小的合成配体控制骨骼肌移植体大小可能是可行的,该配体仅在基因改造的移植细胞中激活成纤维细胞生长因子信号通路。最后,对功能研究进行了综述,提供了明确的证据表明骨骼肌成肌细胞移植通过限制梗死后心脏的重塑是有益的。
鉴于骨骼肌成肌细胞移植用于心肌修复的临床试验正在进行,确定这些细胞在心脏移植后是否搏动将至关重要。