Suppr超能文献

[基于四阶累积量矩阵子空间分解的脑电图逆问题]

[Electroencephalography inverse problem by subspace decomposition of the fourth-order cumulant matrix].

作者信息

Yao D

机构信息

Department of Automation University of Electronic Science and Technology, Chengdu 610054.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2000 Jun;17(2):174-8.

Abstract

It is an important topic in electroencephalography (EEG) research to localize the EEG activity sources from the scalp recordings. In this paper, based on the fourth-order cumulant matrix, a new sub-space decomposition algorithm is proposed for the EEG inverse problem. As the second-order moments (cumulants) has the drawback of being sensitive to the noise covariance. Using the fourth-order cumulants we need not know the noise covariances, as long as the noise is Gaussian. Computer simulation study on a three-layer concentric sphere head model shows its better performance than the two-order cumulate method in depressing the spatial coherent Gaussian noise.

摘要

从头皮记录中定位脑电图(EEG)活动源是脑电图研究中的一个重要课题。本文基于四阶累积量矩阵,针对脑电逆问题提出了一种新的子空间分解算法。由于二阶矩(累积量)存在对噪声协方差敏感的缺点。使用四阶累积量,只要噪声是高斯的,我们就无需知道噪声协方差。在三层同心球头模型上进行的计算机模拟研究表明,在抑制空间相干高斯噪声方面,该算法比二阶累积量方法具有更好的性能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验