Suppr超能文献

基于独立成分分析的脑电图数据伪迹消除

[Eliminating artifacts of EEG data based on independent component analysis].

作者信息

Long Fei, Wu Xiaopei, Fan Ling

机构信息

Key Laboratory of Intelligent Computing & Signal Processing, Ministry of Education, China of Anhui University, Hefei 230039.

出版信息

Sheng Wu Yi Xue Gong Cheng Xue Za Zhi. 2003 Sep;20(3):479-83.

Abstract

As a new array processing technique, independent component analysis(ICA) is an effective means to resolve the blind source separation(BSS) problem. Based on the brief introductions of ICA theory and algorithm, we apply ICA to the removal of ocular artifacts from EEG recordings. The EEG data collected from the human scalp is actually the mixtures of some independent components. It is coincident with the basic assumptions of ICA. Compared with the traditional methods of artifacts elimination, ICA, a kind of spatial filter, is not restricted by the case of spectrum overlapping, and it has a good reservation of useful detail signals. In addition, the inverse weight matrix of ICA can be used to reflect the topographic structure of different independent sources of EEG.

摘要

作为一种新的阵列处理技术,独立成分分析(ICA)是解决盲源分离(BSS)问题的有效手段。在简要介绍ICA理论和算法的基础上,我们将ICA应用于从脑电图记录中去除眼电伪迹。从人体头皮采集的脑电图数据实际上是一些独立成分的混合。这与ICA的基本假设相符。与传统的伪迹消除方法相比,ICA作为一种空间滤波器,不受频谱重叠情况的限制,并且能很好地保留有用的细节信号。此外,ICA的逆权重矩阵可用于反映脑电图不同独立源的地形结构。

相似文献

10
Semi-automatic identification of independent components representing EEG artifact.半自动识别代表脑电图伪迹的独立成分。
Clin Neurophysiol. 2009 May;120(5):868-77. doi: 10.1016/j.clinph.2009.01.015. Epub 2009 Apr 3.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验