Wieland Thomas, Mittmann Clemens
Institut für Pharmakologie und Toxikologie, Fakultät für Klinische Medizin Mannheim der Universität Heidelberg, Maybachstrasse 14-16, D-68169 Mannheim, Germany.
Pharmacol Ther. 2003 Feb;97(2):95-115. doi: 10.1016/s0163-7258(02)00326-1.
Regulator of G-protein signalling (RGS) proteins form a superfamily of at least 25 proteins, which are highly diverse in structure, expression patterns, and function. They share a 120 amino acid homology domain (RGS domain), which exhibits GTPase accelerating activity for alpha-subunits of heterotrimeric G-proteins, and thus, are negative regulators of G-protein-mediated signalling. Based on the organisation of the Rgs genes, structural similarities, and differences in functions, they can be divided into at least six subfamilies of RGS proteins and three more families of RGS-like proteins. Many of these proteins regulate signalling processes within cells, not only via interaction with G-protein alpha-subunits, but are G-protein-regulated effectors, Gbetagamma scavenger, or scaffolding proteins in signal transduction complexes as well. The expression of at least 16 different RGS proteins in the mammalian or human myocardium have been described. A subgroup of at least eight was detected in a single atrial myocyte. The exact functions of these proteins remain mostly elusive, but RGS proteins such as RGS4 are involved in the regulation of G(i)-protein betagamma-subunit-gated K(+) channels. An up-regulation of RGS4 expression has been consistently found in human heart failure and some animal models. Evidence is increasing that the enhanced RGS4 expression counter-regulates the G(q/11)-induced signalling caused by hypertrophic stimuli. In the vascular system, RGS5 seems to be an important signalling regulator. It is expressed in vascular endothelial cells, but not in cultured smooth muscle cells. Its down-regulation, both in a model of capillary morphogenesis and in an animal model of stroke, render it a candidate gene, which may be involved in the regulation of capillary growth, angiogenesis, and in the pathophysiology of stroke.
G蛋白信号调节因子(RGS)蛋白构成了一个至少由25种蛋白质组成的超家族,它们在结构、表达模式和功能上高度多样。它们共享一个120个氨基酸的同源结构域(RGS结构域),该结构域对异源三聚体G蛋白的α亚基具有GTP酶加速活性,因此是G蛋白介导信号传导的负调节因子。根据Rgs基因的组织、结构相似性和功能差异,它们可分为至少六个RGS蛋白亚家族和另外三个RGS样蛋白家族。这些蛋白质中的许多不仅通过与G蛋白α亚基相互作用来调节细胞内的信号传导过程,而且还是G蛋白调节的效应器、Gβγ清除剂或信号转导复合物中的支架蛋白。已经描述了至少16种不同的RGS蛋白在哺乳动物或人类心肌中的表达。在单个心房肌细胞中检测到至少八个成员的一个亚组。这些蛋白质的确切功能大多仍不清楚,但诸如RGS4之类的RGS蛋白参与了对G(i)蛋白βγ亚基门控K(+)通道的调节。在人类心力衰竭和一些动物模型中一直发现RGS4表达上调。越来越多的证据表明,RGS4表达增强会对由肥大刺激引起的G(q/11)诱导的信号传导进行负调节。在血管系统中,RGS5似乎是一种重要的信号调节因子。它在血管内皮细胞中表达,但在培养的平滑肌细胞中不表达。在毛细血管形态发生模型和中风动物模型中,其下调使其成为一个候选基因,可能参与毛细血管生长、血管生成的调节以及中风的病理生理学过程。