Schwan Tom G, Battisti James M, Porcella Stephen F, Raffel Sandra J, Schrumpf Merry E, Fischer Elizabeth R, Carroll James A, Stewart Philip E, Rosa Patricia, Somerville Greg A
Laboratory of Human Bacterial Pathogenesis, Rocky Mountain Laboratories, National Institute of Allergy and Infectious Diseases, National Institutes of Health, Hamilton, Montana 59840, USA.
J Bacteriol. 2003 Feb;185(4):1346-56. doi: 10.1128/JB.185.4.1346-1356.2003.
Relapsing-fever spirochetes achieve high cell densities (>10(8)/ml) in their host's blood, while Lyme disease spirochetes do not (<10(5)/ml). This striking contrast in pathogenicity of these two groups of bacteria suggests a fundamental difference in their ability to either exploit or survive in blood. Borrelia hermsii, a tick-borne relapsing-fever spirochete, contains orthologs to glpQ and glpT, genes that encode glycerophosphodiester phosphodiesterase (GlpQ) and glycerol-3-phosphate transporter (GlpT), respectively. In other bacteria, GlpQ hydrolyzes deacylated phospholipids to glycerol-3-phosphate (G3P) while GlpT transports G3P into the cytoplasm. Enzyme assays on 17 isolates of borreliae demonstrated GlpQ activity in relapsing-fever spirochetes but not in Lyme disease spirochetes. Southern blots demonstrated glpQ and glpT in all relapsing-fever spirochetes but not in the Lyme disease group. A Lyme disease spirochete, Borrelia burgdorferi, that was transformed with a shuttle vector containing glpTQ from B. hermsii produced active enzyme, which demonstrated the association of glpQ with the hydrolysis of phospholipids. Sequence analysis of B. hermsii identified glpF, glpK, and glpA, which encode the glycerol facilitator, glycerol kinase, and glycerol-3-phosphate dehydrogenase, respectively, all of which are present in B. burgdorferi. All spirochetes examined had gpsA, which encodes the enzyme that reduces dihydroxyacetone phosphate (DHAP) to G3P. Consequently, three pathways for the acquisition of G3P exist among borreliae: (i) hydrolysis of deacylated phospholipids, (ii) reduction of DHAP, and (iii) uptake and phosphorylation of glycerol. The unique ability of relapsing-fever spirochetes to hydrolyze phospholipids may contribute to their higher cell densities in blood than those of Lyme disease spirochetes.
回归热螺旋体在宿主血液中可达到较高的细胞密度(>10⁸/ml),而莱姆病螺旋体则不然(<10⁵/ml)。这两组细菌在致病性上的显著差异表明它们在血液中利用营养或生存能力上存在根本差异。赫氏疏螺旋体是一种蜱传回归热螺旋体,含有与glpQ和glpT的直系同源基因,这两个基因分别编码甘油磷酸二酯磷酸二酯酶(GlpQ)和甘油-3-磷酸转运蛋白(GlpT)。在其他细菌中,GlpQ将去酰化磷脂水解为甘油-3-磷酸(G3P),而GlpT将G3P转运到细胞质中。对17株疏螺旋体进行的酶活性测定表明,回归热螺旋体具有GlpQ活性,而莱姆病螺旋体则没有。Southern印迹显示所有回归热螺旋体中都有glpQ和glpT,而莱姆病螺旋体组中则没有。用含有赫氏疏螺旋体glpTQ的穿梭载体转化的莱姆病螺旋体伯氏疏螺旋体产生了活性酶,这证明了glpQ与磷脂水解有关。赫氏疏螺旋体的序列分析鉴定出了glpF、glpK和glpA,它们分别编码甘油转运蛋白、甘油激酶和甘油-3-磷酸脱氢酶,所有这些基因在伯氏疏螺旋体中也都存在。所有检测的螺旋体都有gpsA,它编码将磷酸二羟丙酮(DHAP)还原为G3P的酶。因此,疏螺旋体中存在三种获取G3P的途径:(i)去酰化磷脂的水解,(ii)DHAP的还原,以及(iii)甘油的摄取和磷酸化。回归热螺旋体独特的磷脂水解能力可能是其在血液中的细胞密度高于莱姆病螺旋体的原因。