Suppr超能文献

采用新型空气反冲洗系统对声学细胞过滤器进行优化。

Optimization of an acoustic cell filter with a novel air-backflush system.

作者信息

Gorenflo Volker M, Angepat Sumitra, Bowen Bruce D, Piret James M

机构信息

Biotechnology Laboratory, University of British Columbia, 237-6174 University Boulevard, Vancouver, Canada V6T 1Z3.

出版信息

Biotechnol Prog. 2003 Jan-Feb;19(1):30-6. doi: 10.1021/bp025625a.

Abstract

Increasing worldwide demand for mammalian cell production capacity will likely be partially satisfied by a greater use of higher volumetric productivity perfusion processes. An important additional component of any perfusion system is the cell retention device that can be based on filtration, sedimentation, and/or acoustic technologies. A common concern with these systems is that pumping and transient exposure to suboptimal medium conditions may damage the cells or influence the product quality. A novel air-backflush mode of operating an acoustic cell separator was developed in which an injection of bioreactor air downstream of the separator periodically returned the captured cells to the reactor, allowing separation to resume within 20 s. This mode of operation eliminated the need to pump the cells and allows the selection of a residence time in the separator depending on the sensitivity of the cell line. The air-backflush mode of operating a 10L acoustic separator was systematically tested at 10(7) cells/mL to define reliable ranges of operation. Consistent separation performance was obtained for wide ranges of cooling airflow rates from 0 to 15 L/min and for backflush frequencies between 10 and 40 h(-1). The separator performance was optimized at a perfusion rate of 10 L/day to obtain a maximum separation efficiency of 92 +/- 0.3%. This was achieved by increasing the power setting to 8 W and using duty cycle stop and run times of 4.5 and 45 s, respectively. Acoustic cell separation with air backflush was successfully applied over a 110 day CHO cell perfusion culture at 10(7) cells/mL and 95% viability.

摘要

全球对哺乳动物细胞生产能力的需求不断增加,更多地采用更高体积生产率的灌注工艺可能会部分满足这一需求。任何灌注系统的一个重要附加组件是细胞保留装置,其可以基于过滤、沉降和/或声学技术。这些系统的一个常见问题是泵送以及短暂暴露于次优培养基条件可能会损害细胞或影响产品质量。开发了一种新型的声学细胞分离器气反冲操作模式,其中在分离器下游注入生物反应器空气会定期将捕获的细胞返回反应器,使分离在20秒内恢复。这种操作模式无需泵送细胞,并允许根据细胞系的敏感性选择在分离器中的停留时间。在10⁷个细胞/毫升的条件下,对10升声学分离器的气反冲操作模式进行了系统测试,以确定可靠的操作范围。在0至15升/分钟的宽冷却气流速率范围以及10至40小时⁻¹的反冲频率下,获得了一致的分离性能。在10升/天的灌注速率下优化了分离器性能,以获得92±0.3%的最大分离效率。这是通过将功率设置增加到8瓦,并分别使用4.5秒和45秒的占空比停止和运行时间来实现的。气反冲声学细胞分离在10⁷个细胞/毫升和95%活力的条件下,成功应用于110天的中国仓鼠卵巢(CHO)细胞灌注培养。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验