Suppr超能文献

玉米低植酸突变体lpa2是由肌醇磷酸激酶基因突变引起的。

The maize low-phytic acid mutant lpa2 is caused by mutation in an inositol phosphate kinase gene.

作者信息

Shi Jinrui, Wang Hongyu, Wu Yunsheng, Hazebroek Jan, Meeley Robert B, Ertl David S

机构信息

Pioneer Hi-Bred International, P.O. Box 1004, Johnston, Iowa 50131, USA.

出版信息

Plant Physiol. 2003 Feb;131(2):507-15. doi: 10.1104/pp.014258.

Abstract

Reduced phytic acid content in seeds is a desired goal for genetic improvement in several crops. Low-phytic acid mutants have been used in genetic breeding, but it is not known what genes are responsible for the low-phytic acid phenotype. Using a reverse genetics approach, we found that the maize (Zea mays) low-phytic acid lpa2 mutant is caused by mutation in an inositol phosphate kinase gene. The maize inositol phosphate kinase (ZmIpk) gene was identified through sequence comparison with human and Arabidopsis Ins(1,3,4)P(3) 5/6-kinase genes. The purified recombinant ZmIpk protein has kinase activity on several inositol polyphosphates, including Ins(1,3,4)P(3), Ins(3,5,6)P(3), Ins(3,4,5,6)P(4), and Ins(1,2,5,6)P(4). The ZmIpk mRNA is expressed in the embryo, the organ where phytic acid accumulates in maize seeds. The ZmIpk Mutator insertion mutants were identified from a Mutator F(2) family. In the ZmIpk Mu insertion mutants, seed phytic acid content is reduced approximately 30%, and inorganic phosphate is increased about 3-fold. The mutants also accumulate myo-inositol and inositol phosphates as in the lpa2 mutant. Allelic tests showed that the ZmIpk Mu insertion mutants are allelic to the lpa2. Southern-blot analysis, cloning, and sequencing of the ZmIpk gene from lpa2 revealed that the lpa2-1 allele is caused by the genomic sequence rearrangement in the ZmIpk locus and the lpa2-2 allele has a nucleotide mutation that generated a stop codon in the N-terminal region of the ZmIpk open reading frame. These results provide evidence that ZmIpk is one of the kinases responsible for phytic acid biosynthesis in developing maize seeds.

摘要

降低种子中的植酸含量是几种作物遗传改良的一个理想目标。低植酸突变体已被用于遗传育种,但尚不清楚哪些基因导致了低植酸表型。采用反向遗传学方法,我们发现玉米(Zea mays)低植酸lpa2突变体是由肌醇磷酸激酶基因突变引起的。通过与人及拟南芥Ins(1,3,4)P(3) 5/6-激酶基因进行序列比较,鉴定出了玉米肌醇磷酸激酶(ZmIpk)基因。纯化的重组ZmIpk蛋白对几种肌醇多磷酸具有激酶活性,包括Ins(1,3,4)P(3)、Ins(3,5,6)P(3)、Ins(3,4,5,6)P(4)和Ins(1,2,5,6)P(4)。ZmIpk mRNA在胚中表达,胚是玉米种子中植酸积累的器官。从一个Mutator F(2)家系中鉴定出了ZmIpk Mutator插入突变体。在ZmIpk Mu插入突变体中,种子植酸含量降低了约30%,无机磷酸盐增加了约3倍。这些突变体也像lpa2突变体一样积累了肌醇和肌醇磷酸。等位性测试表明,ZmIpk Mu插入突变体与lpa2是等位的。对lpa2的ZmIpk基因进行Southern杂交分析、克隆和测序表明,lpa2-1等位基因是由ZmIpk基因座中的基因组序列重排引起的,而lpa2-2等位基因有一个核苷酸突变,该突变在ZmIpk开放阅读框的N端区域产生了一个终止密码子。这些结果提供了证据,证明ZmIpk是发育中的玉米种子中负责植酸生物合成的激酶之一。

相似文献

3
Seed phosphorus and inositol phosphate phenotype of barley low phytic acid genotypes.
Phytochemistry. 2003 Mar;62(5):691-706. doi: 10.1016/s0031-9422(02)00610-6.
5
A paramutation phenomenon is involved in the genetics of maize low phytic acid1-241 (lpa1-241) trait.
Heredity (Edinb). 2009 Mar;102(3):236-45. doi: 10.1038/hdy.2008.96. Epub 2008 Sep 10.
6
Inositol 1,3,4,5,6-pentakisphosphate 2-kinase from maize: molecular and biochemical characterization.
Plant Physiol. 2007 Jul;144(3):1278-91. doi: 10.1104/pp.107.095455. Epub 2007 May 25.
8
Characterization of an Arabidopsis inositol 1,3,4,5,6-pentakisphosphate 2-kinase (AtIPK1).
Biochem J. 2006 Feb 15;394(Pt 1):95-103. doi: 10.1042/BJ20051331.
9
Study of low phytic acid1-7 (lpa1-7), a new ZmMRP4 mutation in maize.
J Hered. 2012 Jul;103(4):598-605. doi: 10.1093/jhered/ess014. Epub 2012 May 4.

引用本文的文献

1
CRISPR-based gene editing in plants: Focus on reagents and their delivery tools.
Bioimpacts. 2024 Jun 15;15:30019. doi: 10.34172/bi.30019. eCollection 2025.
3
4
Genetic biofortification: advancing crop nutrition to tackle hidden hunger.
Funct Integr Genomics. 2024 Feb 16;24(2):34. doi: 10.1007/s10142-024-01308-z.
6
An Overview of Targeted Genome Editing Strategies for Reducing the Biosynthesis of Phytic Acid: an Anti-nutrient in Crop Plants.
Mol Biotechnol. 2024 Jan;66(1):11-25. doi: 10.1007/s12033-023-00722-1. Epub 2023 Apr 16.
8
Genetic manipulation of anti-nutritional factors in major crops for a sustainable diet in future.
Front Plant Sci. 2023 Feb 15;13:1070398. doi: 10.3389/fpls.2022.1070398. eCollection 2022.
9
Prospects of genetics and breeding for low-phosphate tolerance: an integrated approach from soil to cell.
Theor Appl Genet. 2022 Nov;135(11):4125-4150. doi: 10.1007/s00122-022-04095-y. Epub 2022 May 7.

本文引用的文献

1
Regulation of Ins(3,4,5,6)P(4) signaling by a reversible kinase/phosphatase.
Curr Biol. 2002 Mar 19;12(6):477-82. doi: 10.1016/s0960-9822(02)00713-3.
2
Inositol phosphates from barley low-phytate grain mutants analysed by metal-dye detection HPLC and NMR.
Biochem J. 2001 Mar 1;354(Pt 2):473-80. doi: 10.1042/0264-6021:3540473.
4
Origin and seed phenotype of maize low phytic acid 1-1 and low phytic acid 2-1.
Plant Physiol. 2000 Sep;124(1):355-68. doi: 10.1104/pp.124.1.355.
5
An Entamoeba histolytica inositol 1,3,4-trisphosphate 5/6-kinase has a novel 3-kinase activity.
Mol Biochem Parasitol. 2000 Apr 30;108(1):119-23. doi: 10.1016/s0166-6851(00)00197-3.
7
Effect of genetically modified, low-phytic acid maize on absorption of iron from tortillas.
Am J Clin Nutr. 1998 Nov;68(5):1123-7. doi: 10.1093/ajcn/68.5.1123.
8
Biochemistry and genetics of inositol phosphate metabolism in Dictyostelium.
FEBS Lett. 1997 Jun 23;410(1):39-43. doi: 10.1016/s0014-5793(97)00415-8.
9
Characterization of a cDNA encoding Arabidopsis thaliana inositol 1,3,4-trisphosphate 5/6-kinase.
Biochem Biophys Res Commun. 1997 Mar 27;232(3):678-81. doi: 10.1006/bbrc.1997.6355.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验