Majumdar Arun
Nanoengineering Laboratory, Department of Mechanical Engineering, University of California, Berkeley, CA 94720, USA.
Dis Markers. 2002;18(4):167-74. doi: 10.1155/2002/856032.
Recent experiments have shown that when specific biomolecular interactions are confined to one surface of a microcantilever beam, changes in intermolecular nanomechanical forces provide sufficient differential torque to bend the cantilever beam. This has been used to detect single base pair mismatches during DNA hybridization, as well as prostate specific antigen (PSA) at concentrations and conditions that are clinically relevant for prostate cancer diagnosis. Since cantilever motion originates from free energy change induced by specific biomolecular binding, this technique is now offering a common platform for label-free quantitative analysis of protein-protein binding, DNA hybridization DNA-protein interactions, and in general receptor-ligand interactions. Current work is focused on developing "universal microarrays" of microcantilever beams for high-throughput multiplexed bioassays.
最近的实验表明,当特定的生物分子相互作用局限于微悬臂梁的一个表面时,分子间纳米机械力的变化会提供足够的差动扭矩来使悬臂梁弯曲。这已被用于在DNA杂交过程中检测单碱基对错配,以及在与前列腺癌诊断临床相关的浓度和条件下检测前列腺特异性抗原(PSA)。由于悬臂运动源于特定生物分子结合引起的自由能变化,该技术目前正在为蛋白质-蛋白质结合、DNA杂交、DNA-蛋白质相互作用以及一般的受体-配体相互作用的无标记定量分析提供一个通用平台。目前的工作重点是开发用于高通量多重生物测定的微悬臂梁“通用微阵列”。