Pilyugin Sergei S, Waltman Paul
Department of Mathematics, University of Florida, Gainesville, FL 32611-8105, USA.
Math Biosci. 2003 Apr;182(2):151-66. doi: 10.1016/s0025-5564(02)00214-6.
The global asymptotic behavior of solutions of the variable yield model is determined. The model generalizes the classical Monod model and it assumes that the yield is an increasing function of the nutrient concentration. In contrast to the Monod model, it is demonstrated that the variable yield model exhibits sustained oscillations. Moreover, it is shown that the variable yield model may undergo a subcritical Hopf bifurcation and feature at least two distinct limit cycles. Implications for the coexistence of competing populations are discussed.
确定了可变产量模型解的全局渐近行为。该模型推广了经典的莫诺德模型,并且假设产量是营养物浓度的增函数。与莫诺德模型不同的是,已证明可变产量模型表现出持续振荡。此外,还表明可变产量模型可能经历亚临界霍普夫分岔并具有至少两个不同的极限环。讨论了对竞争种群共存的影响。