Suppr超能文献

金黄色葡萄球菌中β-内酰胺抗生素耐药性及其通过跨膜BlaR信号通路的传感结构域介导的机制。

Resistance to beta-lactam antibiotics and its mediation by the sensor domain of the transmembrane BlaR signaling pathway in Staphylococcus aureus.

作者信息

Golemi-Kotra Dasantila, Cha Joo Young, Meroueh Samy O, Vakulenko Sergei B, Mobashery Shahriar

机构信息

Department of Chemistry, Institute for Drug Design, Wayne State University, Detroit, Michigan 48202-3489, USA.

出版信息

J Biol Chem. 2003 May 16;278(20):18419-25. doi: 10.1074/jbc.M300611200. Epub 2003 Feb 18.

Abstract

Staphylococci, a leading cause of infections worldwide, have devised two mechanisms for resistance to beta-lactam antibiotics. One is production of beta-lactamases, hydrolytic resistance enzymes, and the other is the expression of penicillin-binding protein 2a (PBP 2a), which is not susceptible to inhibition by beta-lactam antibiotics. The beta-lactam sensor-transducer (BlaR), an integral membrane protein, binds beta-lactam antibiotics on the cell surface and transduces the information to the cytoplasm, where gene expression is derepressed for both beta-lactamase and penicillin-binding protein 2a. The gene for the sensor domain of the sensor-transducer protein (BlaR(S)) of Staphylococcus aureus was cloned, and the protein was purified to homogeneity. It is shown that beta-lactam antibiotics covalently modify the BlaR(S) protein. The protein was shown to contain the unusual carboxylated lysine that activates the active site serine residue for acylation by the beta-lactam antibiotics. The details of the kinetics of interactions of the BlaR(S) protein with a series of beta-lactam antibiotics were investigated. The protein undergoes acylation by beta-lactam antibiotics with microscopic rate constants (k(2)) of 1-26 s(-1), yet the deacylation process was essentially irreversible within one cell cycle. The protein undergoes a significant conformational change on binding with beta-lactam antibiotics, a process that commences at the preacylation complex and reaches its full effect after protein acylation has been accomplished. These conformational changes are likely to be central to the signal transduction events when the organism is exposed to the beta-lactam antibiotic.

摘要

葡萄球菌是全球感染的主要病因,它已形成两种对β-内酰胺类抗生素的耐药机制。一种是产生β-内酰胺酶,即水解耐药酶;另一种是表达青霉素结合蛋白2a(PBP 2a),它不易受到β-内酰胺类抗生素的抑制。β-内酰胺传感器-转导蛋白(BlaR)是一种整合膜蛋白,在细胞表面结合β-内酰胺类抗生素,并将信息传递到细胞质中,在那里β-内酰胺酶和青霉素结合蛋白2a的基因表达被去抑制。克隆了金黄色葡萄球菌传感器-转导蛋白(BlaR(S))的传感器结构域基因,并将该蛋白纯化至同质。结果表明,β-内酰胺类抗生素可共价修饰BlaR(S)蛋白。该蛋白含有不寻常的羧化赖氨酸,它可激活活性位点丝氨酸残基,使其被β-内酰胺类抗生素酰化。研究了BlaR(S)蛋白与一系列β-内酰胺类抗生素相互作用的动力学细节。该蛋白被β-内酰胺类抗生素酰化的微观速率常数(k(2))为1-26 s(-1),但在一个细胞周期内脱酰化过程基本上是不可逆的。该蛋白与β-内酰胺类抗生素结合时会发生显著的构象变化,这一过程始于预酰化复合物,并在蛋白酰化完成后达到最大效果。当生物体暴露于β-内酰胺类抗生素时,这些构象变化可能是信号转导事件的核心。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验