Suppr超能文献

金黄色葡萄球菌的β-内酰胺特异性耐药突变体

Beta-lactam-specific resistant mutants of Staphylococcus aureus.

作者信息

Tonin E, Tomasz A

出版信息

Antimicrob Agents Chemother. 1986 Oct;30(4):577-83. doi: 10.1128/AAC.30.4.577.

Abstract

In an approach to understanding the origin of methicillin resistance in clinical isolates of staphylococci, a series of Staphylococcus aureus mutants resistant to various beta-lactam antibiotics were isolated in the laboratory by antibiotic selection. Mutants with low- and intermediate-level resistance showed considerable specificity for the particular antibiotic used in the selection process (methicillin, cefotaxime, cephalexin, and amdinocillin), and resistance in such mutants also showed alterations in the antibiotic binding capacities of penicillin-binding proteins (PBPs). In each case the isolation of mutants resistant to high concentrations of antibiotics required sequential passage in gradually increasing concentrations of the drug. The acquisition of increasing levels of methicillin resistance was paralleled by a gradual decrease in the binding capacities of PBPs 2, 3, and, possibly, 1. In a highly methicillin-resistant mutant (MIC, 150 micrograms/ml), PBPs 2 and 3 were no longer detectable by the penicillin binding assay. Instead, a new PBP of poor binding capacity and anomalous molecular size (about 78 kilodaltons [kDa]) appeared in these cells. This corresponds to the molecular size of PBP 2a, the unique PBP that appears to be the biochemical correlate of resistance in clinical isolates of methicillin-resistant S. aureus. Also, similar to the case of resistant clinical isolates, high-level beta-lactam resistance was highly pH dependent in the laboratory mutants. We compared the patterns of radioactive peptides generated by partial proteolysis from the penicillin-labeled PBP 2 of antibiotic-susceptible staphylococci and from the 78-kDa PBP 2a of a resistant clinical strain. Although the patterns were clearly different, seven of the eight characteristic peptides generated from PBP 2 of the susceptible strain were also detectable among the peptides released from PBP 2a. The results suggest that the 78-kDa PBP 2a of the resistant clinical strain evolved from PBP 2 of antibiotic-susceptible staphylococci and that in PBP 2a of the clinical isolate mutational changes have resulted in extensive alterations near the beta-lactam binding site.

摘要

为了探究葡萄球菌临床分离株中耐甲氧西林的起源,通过抗生素筛选在实验室中分离出了一系列对各种β-内酰胺抗生素耐药的金黄色葡萄球菌突变体。低水平和中等水平耐药的突变体对筛选过程中使用的特定抗生素(甲氧西林、头孢噻肟、头孢氨苄和氨曲南)表现出相当的特异性,并且这些突变体中的耐药性还表现为青霉素结合蛋白(PBPs)的抗生素结合能力发生改变。在每种情况下,分离出对高浓度抗生素耐药的突变体都需要在逐渐增加的药物浓度中连续传代。随着甲氧西林耐药水平的提高,PBP 2、3以及可能的PBP 1的结合能力逐渐下降。在一个高度耐甲氧西林的突变体(最低抑菌浓度,150微克/毫升)中,通过青霉素结合试验无法再检测到PBP 2和3。取而代之的是,这些细胞中出现了一种结合能力差且分子大小异常(约78千道尔顿[kDa])的新PBP。这与PBP 2a的分子大小相对应,PBP 2a是一种独特的PBP,似乎是耐甲氧西林金黄色葡萄球菌临床分离株中耐药性的生化相关因素。此外,与耐药临床分离株的情况类似,实验室突变体中的高水平β-内酰胺耐药性高度依赖于pH值。我们比较了抗生素敏感葡萄球菌青霉素标记的PBP 2和耐药临床菌株的78-kDa PBP 2a经部分蛋白酶解产生的放射性肽图谱。尽管图谱明显不同,但在从PBP 2a释放的肽中也可检测到敏感菌株PBP 2产生的八个特征肽中的七个。结果表明,耐药临床菌株的78-kDa PBP 2a由抗生素敏感葡萄球菌的PBP 2进化而来,并且临床分离株的PBP 2a中的突变变化导致了β-内酰胺结合位点附近的广泛改变。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/88c3/176484/1ca5bc3fc9f8/aac00165-0088-a.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验