Zhang Xuchen, Shan Peiying, Sasidhar Madhu, Chupp Geoffrey L, Flavell Richard A, Choi Augustine M K, Lee Patty J
Section of Pulmonary and Critical Care Medicine, Yale University School of Medicine, New Haven, Connecticut 06520, USA.
Am J Respir Cell Mol Biol. 2003 Mar;28(3):305-15. doi: 10.1165/rcmb.2002-0156OC.
Therapy with high oxygen concentrations (hyperoxia) is often necessary to treat patients with respiratory failure. However, hyperoxia may exacerbate the development of acute lung injury, perhaps by increasing lung epithelial cell death. Therefore, interrupting lung epithelial cell death is an important protective and therapeutic strategy. In the present study, hyperoxia (95% O(2)) results in murine lung epithelium cell death by DNA-laddering, terminal deoxynucleotidyltransferase dUTP nick end labeling, and Annexin V-fluorescein isothiocyanate flow cytometry assay. We show that hyperoxia increases superoxide production, as assessed by nicotinamide adenine dinucleotide phosphate reduced (NADPH) oxidase activity and flow cytometric assay, and increases phospho-extracellular signal-regulated kinase (ERK)1/2 by Western blot analysis. These processes are inhibited by a reactive oxygen species inhibitor, diphenylene iodonium (DPI), and by an inhibitor of the mitogen-activated protein (MAP) or ERK kinase (MEK)/ERK1/2 pathway, PD98059. ERK1/2 activation in hyperoxia is also inhibited by DPI. Hyperoxia-induced cell death is associated with cytochrome c release, subsequent caspase 9 and 3 activation, and poly (ADP-ribosyl) polymerase cleavage, which can all be suppressed by DPI and PD98059. However, the broad caspase inhibitor z-VAD-FMK protects cells from death without affecting superoxide generation and ERK1/2 activation. Taken together, our data suggest that hyperoxia, by virtue of activating NADPH oxidase, generates reactive oxygen species (ROS), which mediates cell death of lung epithelium via ERK1/2 MAPK activation, and functions upstream of caspase activation in lung epithelial cells.
使用高氧浓度(高氧)疗法治疗呼吸衰竭患者通常是必要的。然而,高氧可能会加剧急性肺损伤的发展,可能是通过增加肺上皮细胞死亡来实现的。因此,阻断肺上皮细胞死亡是一种重要的保护和治疗策略。在本研究中,高氧(95% O₂)通过DNA梯状条带分析、末端脱氧核苷酸转移酶dUTP缺口末端标记法以及膜联蛋白V-异硫氰酸荧光素流式细胞术检测,导致小鼠肺上皮细胞死亡。我们发现,通过烟酰胺腺嘌呤二核苷酸磷酸还原型(NADPH)氧化酶活性测定和流式细胞术检测评估,高氧会增加超氧化物的产生,并且通过蛋白质印迹分析发现高氧会增加磷酸化细胞外信号调节激酶(ERK)1/2的水平。这些过程受到活性氧抑制剂二苯碘鎓(DPI)以及丝裂原活化蛋白(MAP)或ERK激酶(MEK)/ERK1/2通路抑制剂PD98059 的抑制。高氧诱导的ERK1/2激活也受到DPI的抑制。高氧诱导的细胞死亡与细胞色素c释放、随后的半胱天冬酶9和3激活以及聚(ADP-核糖)聚合酶裂解有关,而这些都可以被DPI和PD98059抑制。然而,广谱半胱天冬酶抑制剂z-VAD-FMK可保护细胞免于死亡,而不影响超氧化物的产生和ERK1/2的激活。综上所述,我们的数据表明,高氧通过激活NADPH氧化酶产生活性氧(ROS),ROS通过ERK1/2丝裂原活化蛋白激酶(MAPK)激活介导肺上皮细胞死亡,并且在肺上皮细胞半胱天冬酶激活的上游发挥作用。