Suppr超能文献

论细胞的起源:关于从非生物地球化学到化学自养原核生物,以及从原核生物到有核细胞的进化转变的假说。

On the origins of cells: a hypothesis for the evolutionary transitions from abiotic geochemistry to chemoautotrophic prokaryotes, and from prokaryotes to nucleated cells.

作者信息

Martin William, Russell Michael J

机构信息

Institut für Botanik III, Heinrich-Heine Universitaet Düsseldorf, Universitätsstrasse 1, 40225 Düsseldorf, Germany.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2003 Jan 29;358(1429):59-83; discussion 83-5. doi: 10.1098/rstb.2002.1183.

Abstract

All life is organized as cells. Physical compartmentation from the environment and self-organization of self-contained redox reactions are the most conserved attributes of living things, hence inorganic matter with such attributes would be life's most likely forebear. We propose that life evolved in structured iron monosulphide precipitates in a seepage site hydrothermal mound at a redox, pH and temperature gradient between sulphide-rich hydrothermal fluid and iron(II)-containing waters of the Hadean ocean floor. The naturally arising, three-dimensional compartmentation observed within fossilized seepage-site metal sulphide precipitates indicates that these inorganic compartments were the precursors of cell walls and membranes found in free-living prokaryotes. The known capability of FeS and NiS to catalyse the synthesis of the acetyl-methylsulphide from carbon monoxide and methylsulphide, constituents of hydrothermal fluid, indicates that pre-biotic syntheses occurred at the inner surfaces of these metal-sulphide-walled compartments, which furthermore restrained reacted products from diffusion into the ocean, providing sufficient concentrations of reactants to forge the transition from geochemistry to biochemistry. The chemistry of what is known as the RNA-world could have taken place within these naturally forming, catalyticwalled compartments to give rise to replicating systems. Sufficient concentrations of precursors to support replication would have been synthesized in situ geochemically and biogeochemically, with FeS (and NiS) centres playing the central catalytic role. The universal ancestor we infer was not a free-living cell, but rather was confined to the naturally chemiosmotic, FeS compartments within which the synthesis of its constituents occurred. The first free-living cells are suggested to have been eubacterial and archaebacterial chemoautotrophs that emerged more than 3.8 Gyr ago from their inorganic confines. We propose that the emergence of these prokaryotic lineages from inorganic confines occurred independently, facilitated by the independent origins of membrane-lipid biosynthesis: isoprenoid ether membranes in the archaebacterial and fatty acid ester membranes in the eubacterial lineage. The eukaryotes, all of which are ancestrally heterotrophs and possess eubacterial lipids, are suggested to have arisen ca. 2 Gyr ago through symbiosis involving an autotrophic archaebacterial host and a heterotrophic eubacterial symbiont, the common ancestor of mitochondria and hydrogenosomes. The attributes shared by all prokaryotes are viewed as inheritances from their confined universal ancestor. The attributes that distinguish eubacteria and archaebacteria, yet are uniform within the groups, are viewed as relics of their phase of differentiation after divergence from the non-free-living universal ancestor and before the origin of the free-living chemoautotrophic lifestyle. The attributes shared by eukaryotes with eubacteria and archaebacteria, respectively, are viewed as inheritances via symbiosis. The attributes unique to eukaryotes are viewed as inventions specific to their lineage. The origin of the eukaryotic endomembrane system and nuclear membrane are suggested to be the fortuitous result of the expression of genes for eubacterial membrane lipid synthesis by an archaebacterial genetic apparatus in a compartment that was not fully prepared to accommodate such compounds, resulting in vesicles of eubacterial lipids that accumulated in the cytosol around their site of synthesis. Under these premises, the most ancient divide in the living world is that between eubacteria and archaebacteria, yet the steepest evolutionary grade is that between prokaryotes and eukaryotes.

摘要

所有生命都是由细胞构成的。与环境的物理分隔以及独立的氧化还原反应的自组织是生物最保守的属性,因此具有这些属性的无机物很可能是生命的祖先。我们提出,生命是在冥古宙海底富含硫化物的热液与含铁(II)的海水之间的氧化还原、pH值和温度梯度的渗流区热液丘中的结构化单硫化铁沉淀物中演化而来的。在化石化的渗流区金属硫化物沉淀物中观察到的自然形成的三维分隔表明,这些无机隔室是自由生活的原核生物中发现的细胞壁和细胞膜的前体。已知FeS和NiS能够催化由热液流体的成分一氧化碳和甲基硫化物合成乙酰甲基硫化物,这表明在这些金属硫化物壁隔室的内表面发生了前生物合成,而且这还限制了反应产物扩散到海洋中,从而提供了足够浓度的反应物,以促成从地球化学向生物化学的转变。所谓RNA世界的化学过程可能在这些自然形成的、具有催化作用的壁隔室中发生,从而产生复制系统。支持复制所需的足够浓度的前体物质可能是通过地球化学和生物地球化学原位合成的,其中FeS(和NiS)中心发挥着核心催化作用。我们推断,普遍共同祖先不是一个自由生活的细胞,而是局限于自然化学渗透的FeS隔室中,其组成成分在其中合成。最早的自由生活细胞被认为是真细菌和古细菌化能自养生物,它们在38亿多年前从无机环境中出现。我们提出,这些原核生物谱系从无机环境中出现是独立发生的,这得益于膜脂生物合成的独立起源:古细菌中的类异戊二烯醚膜和真细菌谱系中的脂肪酸酯膜。真核生物在祖先都是异养生物且拥有真细菌脂质,它们被认为大约在20亿年前通过共生产生,涉及一个自养古细菌宿主和一个异养真细菌共生体,即线粒体和氢化酶体的共同祖先。所有原核生物共有的属性被视为来自其受限的普遍共同祖先的遗传。区分真细菌和古细菌但在各自群体内是一致的属性,被视为它们从非自由生活的普遍共同祖先分化出来后、在自由生活的化能自养生活方式起源之前的分化阶段的遗迹。真核生物分别与真细菌和古细菌共有的属性被视为通过共生的遗传。真核生物独有的属性被视为其谱系特有的发明。真核内膜系统和核膜的起源被认为是古细菌遗传装置在一个尚未完全准备好容纳此类化合物的隔室中表达真细菌膜脂合成基因的偶然结果,导致真细菌脂质囊泡在其合成位点周围的细胞质中积累。在这些前提下,生命世界中最古老的划分是真细菌和古细菌之间的划分,但最显著的进化等级是原核生物和真核生物之间的等级。

相似文献

2
The neomuran origin of archaebacteria, the negibacterial root of the universal tree and bacterial megaclassification.
Int J Syst Evol Microbiol. 2002 Jan;52(Pt 1):7-76. doi: 10.1099/00207713-52-1-7.
3
The emergence of life from iron monosulphide bubbles at a submarine hydrothermal redox and pH front.
J Geol Soc London. 1997 May;154(3):377-402. doi: 10.1144/gsjgs.154.3.0377.
4
The phagotrophic origin of eukaryotes and phylogenetic classification of Protozoa.
Int J Syst Evol Microbiol. 2002 Mar;52(Pt 2):297-354. doi: 10.1099/00207713-52-2-297.
5
Horizontal gene flow from Eubacteria to Archaebacteria and what it means for our understanding of eukaryogenesis.
Philos Trans R Soc Lond B Biol Sci. 2015 Sep 26;370(1678):20140337. doi: 10.1098/rstb.2014.0337.
6
Evolution of intracellular compartmentalization.
Biochem J. 2013 Jan 15;449(2):319-31. doi: 10.1042/BJ20120957.
9
Structure and evolution of ubiquitin and ubiquitin-related domains.
Methods Mol Biol. 2012;832:15-63. doi: 10.1007/978-1-61779-474-2_2.
10
Predation between prokaryotes and the origin of eukaryotes.
Bioessays. 2009 Jul;31(7):748-57. doi: 10.1002/bies.200900018.

引用本文的文献

1
Beyond the Second Law: Darwinian Evolution as a Tendency for Entropy Production to Increase.
Entropy (Basel). 2025 Aug 11;27(8):850. doi: 10.3390/e27080850.
3
On the emergence of metabolism: the evolution of proteins that powered life.
Philos Trans R Soc Lond B Biol Sci. 2025 Aug 7;380(1931):20240090. doi: 10.1098/rstb.2024.0090.
4
Bioenergetics evolution: the link between Earth's and Life's history.
Philos Trans R Soc Lond B Biol Sci. 2025 Aug 7;380(1931):20240102. doi: 10.1098/rstb.2024.0102.
6
Permeability selection of biologically relevant membranes matches the stereochemistry of life on Earth.
PLoS Biol. 2025 May 20;23(5):e3003155. doi: 10.1371/journal.pbio.3003155. eCollection 2025 May.
7
Simulated early Earth geochemistry fuels a hydrogen-dependent primordial metabolism.
Nat Ecol Evol. 2025 May;9(5):769-778. doi: 10.1038/s41559-025-02676-w. Epub 2025 Apr 30.
8
Cerium Interferes Iron Binding to Human Serum Apo-Transferrin Which can Affect Iron Metabolism.
Indian J Hematol Blood Transfus. 2025 Apr;41(2):257-266. doi: 10.1007/s12288-024-01850-7. Epub 2024 Sep 19.
9
Chimeric origins and dynamic evolution of central carbon metabolism in eukaryotes.
Nat Ecol Evol. 2025 Apr;9(4):613-627. doi: 10.1038/s41559-025-02648-0. Epub 2025 Mar 3.

本文引用的文献

1
Implications of Solar Evolution for the Earth's Early Atmosphere.
Science. 1977 Dec 9;198(4321):1035-7. doi: 10.1126/science.198.4321.1035.
2
East pacific rise: hot springs and geophysical experiments.
Science. 1980 Mar 28;207(4438):1421-33. doi: 10.1126/science.207.4438.1421.
3
Synthesis of purines under possible primitive earth conditions. II. Purine intermediates from hydrogen cyanide.
Arch Biochem Biophys. 1962 Feb;96:293-313. doi: 10.1016/0003-9861(62)90412-5.
4
The redox protein construction kit: pre-last universal common ancestor evolution of energy-conserving enzymes.
Philos Trans R Soc Lond B Biol Sci. 2003 Jan 29;358(1429):267-74. doi: 10.1098/rstb.2002.1184.
6
A mitochondrial remnant in the microsporidian Trachipleistophora hominis.
Nature. 2002 Aug 22;418(6900):865-9. doi: 10.1038/nature00949.
7
Microbial reefs in the Black Sea fueled by anaerobic oxidation of methane.
Science. 2002 Aug 9;297(5583):1013-5. doi: 10.1126/science.1072502.
9
On the evolution of cells.
Proc Natl Acad Sci U S A. 2002 Jun 25;99(13):8742-7. doi: 10.1073/pnas.132266999. Epub 2002 Jun 19.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验