Yoon Young Geol, Koob Michael D
Institute of Human Genetics, University of Minnesota, 420 Delaware Street SE, Minneapolis, MN 55455, USA.
Nucleic Acids Res. 2003 Mar 1;31(5):1407-15. doi: 10.1093/nar/gkg228.
We have devised an efficient method for replicating and stably maintaining entire mitochondrial genomes in Escherichia coli and have shown that we can engineer these mitochondrial DNA (mtDNA) genome clones using standard molecular biological techniques. In general, we accomplish this by inserting an E.coli replication origin and selectable marker into isolated, circular mtDNA at random locations using an in vitro transposition reaction and then transforming the modified genomes into E.coli. We tested this approach by cloning the 16.3 kb mouse mitochondrial genome and found that the resulting clones could be engineered and faithfully maintained when we used E.coli hosts that replicated them at moderately low copy numbers. When these recombinant mtDNAs were replicated at high copy numbers, however, mtDNA sequences were partially or fully deleted from the original clone. We successfully electroporated recombinant mouse mitochondrial genomes into isolated mouse mitochondria devoid of their own DNA and detected robust in organello RNA synthesis by RT-PCR. This approach for modifying mtDNA and subsequent in organello analysis of the recombinant genomes offers an attractive experimental system for studying many aspects of vertebrate mitochondrial gene expression and is a first step towards true in vivo engineering of mammalian mitochondrial genomes.
我们设计了一种在大肠杆菌中复制并稳定维持完整线粒体基因组的高效方法,并且已经证明我们能够使用标准分子生物学技术对这些线粒体DNA(mtDNA)基因组克隆进行工程改造。一般来说,我们通过体外转座反应将大肠杆菌复制起点和选择标记随机插入分离出的环状mtDNA中,然后将修饰后的基因组转化到大肠杆菌中来实现这一目标。我们通过克隆16.3 kb的小鼠线粒体基因组对该方法进行了测试,结果发现,当我们使用以中等低拷贝数复制它们的大肠杆菌宿主时,得到的克隆能够进行工程改造并得到稳定维持。然而,当这些重组mtDNA以高拷贝数复制时,mtDNA序列会从原始克隆中部分或完全缺失。我们成功地将重组小鼠线粒体基因组电穿孔导入去除自身DNA的分离小鼠线粒体中,并通过逆转录聚合酶链反应(RT-PCR)检测到了强大的细胞器内RNA合成。这种修饰mtDNA的方法以及随后对重组基因组进行的细胞器内分析为研究脊椎动物线粒体基因表达的许多方面提供了一个有吸引力的实验系统,并且是朝着真正的哺乳动物线粒体基因组体内工程迈出的第一步。