DePristo Mark A, de Bakker Paul I W, Lovell Simon C, Blundell Tom L
Department of Biochemistry, University of Cambridge, Cambridge, United Kingdom.
Proteins. 2003 Apr 1;51(1):41-55. doi: 10.1002/prot.10285.
We describe a novel method to generate ensembles of conformations of the main-chain atoms [N, C(alpha), C, O, Cbeta] for a sequence of amino acids within the context of a fixed protein framework. Each conformation satisfies fundamental stereo-chemical restraints such as idealized geometry, favorable phi/psi angles, and excluded volume. The ensembles include conformations both near and far from the native structure. Algorithms for effective conformational sampling and constant time overlap detection permit the generation of thousands of distinct conformations in minutes. Unlike previous approaches, our method samples dihedral angles from fine-grained phi/psi state sets, which we demonstrate is superior to exhaustive enumeration from coarse phi/psi sets. Applied to a large set of loop structures, our method samples consistently near-native conformations, averaging 0.4, 1.1, and 2.2 A main-chain root-mean-square deviations for four, eight, and twelve residue long loops, respectively. The ensembles make ideal decoy sets to assess the discriminatory power of a selection method. Using these decoy sets, we conclude that quality of anchor geometry cannot reliably identify near-native conformations, though the selection results are comparable to previous loop prediction methods. In a subsequent study (de Bakker et al.: Proteins 2003;51:21-40), we demonstrate that the AMBER forcefield with the Generalized Born solvation model identifies near-native conformations significantly better than previous methods.
我们描述了一种新方法,用于在固定蛋白质框架的背景下,生成氨基酸序列中主链原子[N、C(α)、C、O、Cβ]的构象集合。每个构象都满足基本的立体化学限制,如理想化几何结构、有利的φ/ψ角和排除体积。这些构象集合包括与天然结构接近和远离的构象。有效的构象采样算法和恒定时间重叠检测算法允许在几分钟内生成数千种不同的构象。与以前的方法不同,我们的方法从细粒度的φ/ψ状态集中采样二面角,我们证明这优于从粗粒度φ/ψ集中进行穷举枚举。应用于一大组环结构时,我们的方法一致地采样接近天然的构象,对于四个、八个和十二个残基长的环,主链均方根偏差分别平均为0.4、1.1和2.2埃。这些构象集合构成了理想的诱饵集,用于评估选择方法的辨别能力。使用这些诱饵集,我们得出结论,锚定几何结构的质量不能可靠地识别接近天然的构象,尽管选择结果与以前的环预测方法相当。在随后的一项研究中(德·巴克尔等人:《蛋白质》2003年;51:21 - 40),我们证明了带有广义玻恩溶剂化模型的AMBER力场比以前的方法能更好地识别接近天然的构象。