Suppr超能文献

大脑活动的生物物理基础:对神经影像学的启示。

Biophysical basis of brain activity: implications for neuroimaging.

作者信息

Shulman Robert G, Hyder Fahmeed, Rothman Douglas L

机构信息

Magnetic Resonance Center for Research in Metabolism and Physiology, Departments of Molecular Biophysics and Biochemistry, Diagnostic Radiology, Yale University School of Medicine, New Haven, CT 06510, USA.

出版信息

Q Rev Biophys. 2002 Aug;35(3):287-325. doi: 10.1017/s0033583502003803.

Abstract

In vivo 13C magnetic resonance spectroscopy (MRS) studies of the brain have quantitatively assessed rates of glutamate-glutamine cycle (Veye) and glucose oxidation (CMRGle(ox)) by detecting 13C label turnover from glucose to glutamate and glutamine. Contrary to expectations from in vitro and ex vivo studies, the in vivo 13C-MRS results demonstrate that glutamate recycling is a major metabolic pathway, inseparable from its actions of neurotransmission. Furthermore, both in the awake human and in the anesthetized rat brain, Veye and CMRGle(ox) are stoichiometrically related, where more than two thirds of the energy from glucose oxidation supports events associated with glutamate neurotransmission. The high energy consumption of the brain measured at rest and its quantitative relation to neurotransmission reflects a sizeable activity level for the resting brain. The high activity of the non-stimulated brain, as measured by cerebral metabolic rate of oxygen use (CMRO2), establishes a new neurophysiological basis of cerebral function that leads to reinterpreting functional imaging data because the large baseline signal is commonly discarded in cognitive neuroscience paradigms. Changes in energy consumption (delta CMRO2%) can also be obtained from magnetic resonance imaging (MRI) experiments, using the blood oxygen level-dependent (BOLD) image contrast, provided that all the separate parameters contributing to the functional MRI (fMRI) signal are measured. The BOLD-derived delta CMRO2% when compared with alterations in neuronal spiking rate (delta v%) during sensory stimulation in the rat reveals a stoichiometric relationship, in good agreement with 13C-MRS results. Hence fMRI when calibrated so as to provide delta CMRO2% can provide high spatial resolution evaluation of neuronal activity. Our studies of quantitative measurements of changes in neuroenergetics and neurotransmission reveal that a stimulus does not provoke an arbitrary amount of activity in a localized region, rather a total level of activity is required where the increment is inversely related to the level of activity in the non-stimulated condition. These biophysical experiments have established relationships between energy consumption and neuronal activity that provide novel insights into the nature of brain function and the interpretation of fMRI data.

摘要

大脑的体内13C磁共振波谱(MRS)研究通过检测从葡萄糖到谷氨酸和谷氨酰胺的13C标记周转,定量评估了谷氨酸-谷氨酰胺循环速率(Veye)和葡萄糖氧化速率(CMRGle(ox))。与体外和离体研究的预期相反,体内13C-MRS结果表明,谷氨酸再循环是一条主要的代谢途径,与其神经传递作用密不可分。此外,在清醒的人类和麻醉的大鼠大脑中,Veye和CMRGle(ox)在化学计量上相关,其中葡萄糖氧化产生的能量中超过三分之二支持与谷氨酸神经传递相关的事件。静息时测量的大脑高能量消耗及其与神经传递的定量关系反映了静息大脑相当大的活动水平。通过脑氧代谢率(CMRO2)测量的未受刺激大脑的高活动,建立了脑功能的新神经生理学基础,这导致对功能成像数据的重新解释,因为在认知神经科学范式中,大的基线信号通常被丢弃。能量消耗的变化(δCMRO2%)也可以从磁共振成像(MRI)实验中获得,使用血氧水平依赖(BOLD)图像对比度,前提是测量了所有对功能磁共振成像(fMRI)信号有贡献的单独参数。在大鼠感觉刺激期间,将BOLD衍生的δCMRO2%与神经元放电率的变化(δv%)进行比较,揭示了一种化学计量关系,与13C-MRS结果高度一致。因此,当校准fMRI以提供δCMRO2%时,它可以提供神经元活动的高空间分辨率评估。我们对神经能量学和神经传递变化的定量测量研究表明,刺激不会在局部区域引发任意量的活动,而是需要一个总活动水平,其中增量与未受刺激条件下的活动水平成反比。这些生物物理实验建立了能量消耗与神经元活动之间的关系,为脑功能的本质和fMRI数据的解释提供了新的见解。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验