Kamphausen Stefan, Höltge Nils, Wirsching Frank, Morys-Wortmann Corinna, Riester Daniel, Goetz Ruediger, Thürk Marcel, Schwienhorst Andreas
Abteilung fuer Molekulare Genetik und Praeparative Molekularbiologie, Institut für Mikrobiologie und Genetik, Grisebachstr. 8, 37077 Goettingen, Germany.
J Comput Aided Mol Des. 2002 Aug-Sep;16(8-9):551-67. doi: 10.1023/a:1021928016359.
The design of molecules with desired properties is still a challenge because of the largely unpredictable end results. Computational methods can be used to assist and speed up this process. In particular, genetic algorithms have proved to be powerful tools with a wide range of applications, e.g. in the field of drug development. Here, we propose a new genetic algorithm that has been tailored to meet the demands of de novo drug design, i.e. efficient optimization based on small training sets that are analyzed in only a small number of design cycles. The efficiency of the design algorithm was demonstrated in the context of several different applications. First, RNA molecules were optimized with respect to folding energy. Second, a spinglass was optimized as a model system for the optimization of multiletter alphabet biopolymers such as peptides. Finally, the feasibility of the computer-assisted molecular design approach was demonstrated for the de novo construction of peptidic thrombin inhibitors using an iterative process of 4 design cycles of computer-guided optimization. Synthesis and experimental fitness determination of only 600 different compounds from a virtual library of more than 10(17) molecules was necessary to achieve this goal.
由于最终结果在很大程度上不可预测,设计具有所需特性的分子仍然是一项挑战。计算方法可用于辅助并加速这一过程。特别是,遗传算法已被证明是功能强大的工具,具有广泛的应用,例如在药物开发领域。在此,我们提出了一种新的遗传算法,该算法经过定制以满足从头药物设计的需求,即基于仅在少量设计周期中分析的小训练集进行高效优化。设计算法的效率在几种不同的应用中得到了证明。首先,针对折叠能量对RNA分子进行了优化。其次,作为用于优化多字母字母生物聚合物(如肽)的模型系统,对自旋玻璃进行了优化。最后,通过计算机引导优化的4个设计周期的迭代过程,证明了计算机辅助分子设计方法用于从头构建肽类凝血酶抑制剂的可行性。为实现这一目标,仅需从超过10(17)个分子的虚拟库中合成并通过实验确定600种不同化合物的适应性。