Suppr超能文献

DOCK 中配体设计的分子进化算法。

A molecular evolution algorithm for ligand design in DOCK.

机构信息

Department of Biochemistry & Cell Biology, Stony Brook University, Stony Brook, New York, USA.

Department of Molecular Pharmacology, Stony Brook University, Stony Brook, New York, USA.

出版信息

J Comput Chem. 2022 Nov 5;43(29):1942-1963. doi: 10.1002/jcc.26993. Epub 2022 Sep 8.

Abstract

As a complement to virtual screening, de novo design of small molecules is an alternative approach for identifying potential drug candidates. Here, we present a new 3D genetic algorithm to evolve molecules through breeding, mutation, fitness pressure, and selection. The method, termed DOCK_GA, builds upon and leverages powerful sampling, scoring, and searching routines previously implemented into DOCK6. Three primary experiments were used during development: Single-molecule evolution evaluated three selection methods (elitism, tournament, and roulette), in four clinically relevant systems, in terms of mutation type and crossover success, chemical properties, ensemble diversity, and fitness convergence, among others. Large scale benchmarking assessed performance across 651 different protein-ligand systems. Ensemble-based evolution demonstrated using multiple inhibitors simultaneously to seed growth in a SARS-CoV-2 target. Key takeaways include: (1) The algorithm is robust as demonstrated by the successful evolution of molecules across a large diverse dataset. (2) Users have flexibility with regards to parent input, selection method, fitness function, and molecular descriptors. (3) The program is straightforward to run and only requires a single executable and input file at run-time. (4) The elitism selection method yields more tightly clustered molecules in terms of 2D/3D similarity, with more favorable fitness, followed by tournament and roulette.

摘要

作为虚拟筛选的补充,从头设计小分子是识别潜在药物候选物的另一种方法。在这里,我们提出了一种新的 3D 遗传算法,通过繁殖、突变、适应压力和选择来进化分子。该方法称为 DOCK_GA,建立在并利用了以前在 DOCK6 中实现的强大的采样、评分和搜索例程。在开发过程中进行了三个主要实验:单分子进化评估了三种选择方法(精英、竞赛和轮盘),在四个临床相关系统中,根据突变类型和交叉成功率、化学性质、整体多样性和适应度收敛性等方面进行了评估。大规模基准测试评估了 651 个不同的蛋白质-配体系统的性能。基于集合的进化证明了同时使用多种抑制剂来促进 SARS-CoV-2 靶标的生长。主要收获包括:(1) 该算法是稳健的,这一点可以从成功进化的大量不同数据集的分子中得到证明。(2) 用户在亲本输入、选择方法、适应度函数和分子描述符方面具有灵活性。(3) 该程序易于运行,运行时只需一个可执行文件和一个输入文件。(4) 精英选择方法在 2D/3D 相似性方面产生了更紧密聚集的分子,具有更有利的适应度,其次是竞赛和轮盘。

https://cdn.ncbi.nlm.nih.gov/pmc/blobs/1f57/9825940/49e37847fb38/JCC-43-1942-g004.jpg

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验