Suppr超能文献

Wheat embryo ribonucleates. VI. Comparison of the 3'-hydroxyl termini in 'rapidly labelled' RNA from metabolizing wheat embryos with the corresponding termini in ribosomal RNA from differentiating embryos of wheat, barley, corn and pea.

作者信息

Oakden K M, Lane B G

出版信息

Can J Biochem. 1976 Mar;54(3):261-71. doi: 10.1139/o76-039.

Abstract

The NaCl-insoluble (2.5 M, 0 degrees C) fraction of wheat embryo RNA (iRNA) can be labelled when wheat embryos are subjected to either short-term (0.5 h) or long-term (24 h) imbibition in a medium that contains tritium-labelled adenosine, guanosine, cytidine and uridine. Electrophoretic analyses reveal that, after short-term labelling, there is a broadly heterodisperse distribution of radioactivity in 'rapidly labelled' i[3H]RNA, but after long-term labelling, there is an essentially trimodal distribution of radioactivity in i[3H]RNA. End-group analyses reveal that, after short-term labelling, adenosine is the principal 3'-hydroxyl terminus in all centrifugal subfractions of 'rapidly labelled' i[3H]RNA, whereas cytidine (in 5.8S rRNA), guanosine (in 18S rRNA) and uridine (in 26S rRNA) are the principal 3'-hydroxyl termini in centrifugal subfractions of wheat embryo i[3H]RNA. Guanosine is also the principal 3'-hydroxyl terminus in the 18S rRNA of differentiating embryos excized from both monocotyledonous (wheat, barley, corn) and dicotyledonous (pea) seedlings. The implications that the end-group measurements may have for current views about the possible biochemical involvements of 3'-hydroxyl terminal sequences in both mRNA and 18SrRNA are subjects of discussion. Incidental to the principal investigation, an existing technique for analyzing the RNA contents of cellular materials has been appropriately modified to circumvent interference from uv-absorbing pigments, which, when present, prevent application of the method to plant materials.

摘要

相似文献

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验