Choudary Boyapati M, Chowdari Naidu S, Madhi Sateesh, Kantam Mannepalli L
Inorganic & Physical Chemistry Divisions, Indian Institute of Chemical Technology, Hyderabad 500 007, India.
J Org Chem. 2003 Mar 7;68(5):1736-46. doi: 10.1021/jo026687i.
A heterogeneous bifunctional catalyst composed of OsO4(2-)-WO4(2-) and a trifunctional catalyst comprising PdCl4(2-)-OsO4(2-)-WO4(2-), designed and prepared by an ion-exchange technique using layered double hydroxides (LDH) as an ion-exchanger and their homogeneous bifunctional analogue, K2OsO4-Na2WO4 and trifunctional analogue, Na2PdCl4-K2OsO4-Na2WO4, devised for the first time are evaluated for the synthesis of chiral vicinal diols. These bifunctional and trifunctional catalysts perform asymmetric dihydroxylation-N-oxidation and Heck-asymmetric dihydroxylation-N-oxidation, respectively, in the presence of Sharpless chiral ligand, (DHQD)2PHAL in a single pot using H2O2 as a terminal oxidant to provide N-methylmorpholine oxide (NMO) in situ by the oxidation of N-methylmorpholine (NMM). The heterogeneous bifunctional catalyst supported on LDH (LDH-OsW) displays superior activity to afford diols with higher yields over the other heterogeneous catalysts developed by the ion exchange on quaternary ammonium salts covalently bound to resin (resin-OsW) and silica (silica-OsW) or homogeneous catalysts in the achiral dihydroxylation reactions. The LDH-OsW and its homogeneous analogue are found to be very efficient in performing a simultaneous asymmetric dihydroxylation (AD)-N-oxidation of a wide and varied range of aromatic, cyclic, and mono, di-, and trisubstituted olefins to obtain chiral vicinal diols with higher yields and ee's using H2O2. Further, the use of OsO4(2-)-WO4(2-) catalysts as such or in the supported form offers a simplified procedure for catalyst recycling, which shows consistent activity for a number of cycles. In this process, Os(VI) is recycled to Os(VIII) by a coupled electron transfer-mediator (ETM) system based on NMO-WO4(2-) using H2O2, leading to a mild and selective electron transfer. The one-pot biomimic synthesis of chiral diols is mediated by a recyclable trifunctional heterogeneous catalyst (LDH-PdOsW) consisting of active palladium, tungsten, and osmium species embedded in a single matrix. This protocol, which provides prochiral olefins and NMO in situ by Heck coupling and N-oxidation of NMM, respectively, required for the AD, unfolds a low cost process. We extended the present method to the one-pot synthesis of trisubstituted chiral vicinal diols with moderate to excellent ee's by AD of trisubstituted olefins that are obtained by in situ Heck arylation of disubstituted olefins. The heterogeneous trifunctional catalysts offers chiral diols with unprecedented ee's and excellent yields in the AD of prochiral cinnamates, which are obtained in situ from acrylates and halobenzenes for the first time. The new variants such as LDH support and Et3N*HX inherently composed in the heterogeneous multicomponent system and slow addition of H2O2 facilitates the hydrolysis of osmium monogylcolate ester to subdue the formation of bisglycolate ester to achieve higher ee's. Without resorting to recrystallization, the chiral diols of cinnamates thus synthesized with 99% ee's and devoid of osmium contamination are directly put to use in the synthesis of diltiazem and Taxol side chain with an overall improved yield to demonstrate the synthetic utility of the trifunctional heterogeneous catalyst. The high binding ability of the heterogeneous osmium catalyst enables the use of equimolar ratio of ligand to osmium to give excellent ee's in AD in contrast to the homogeneous osmium system in which the excess molar quantities of the expensive chiral ligand to osmium are invariably used. Further, the XRD, FT-IR, UV-vis DRS, and XPS studies indicate the retention of the coordination geometries of the specific divalent anions anchored to LDH matrix in their monomeric form during the ion exchange and after the reaction.
通过离子交换技术,以层状双氢氧化物(LDH)作为离子交换剂设计并制备了一种由OsO4(2-)-WO4(2-)组成的多相双功能催化剂,以及一种包含PdCl4(2-)-OsO4(2-)-WO4(2-)的三功能催化剂,同时还首次设计了它们的均相双功能类似物K2OsO4-Na2WO4和三功能类似物Na2PdCl4-K2OsO4-Na2WO4,并对其在手性邻二醇合成中的性能进行了评估。在Sharpless手性配体(DHQD)2PHAL存在下,这些双功能和三功能催化剂分别在单锅中使用H2O2作为终端氧化剂进行不对称二羟基化-N-氧化和Heck-不对称二羟基化-N-氧化反应,通过N-甲基吗啉(NMM)的氧化原位生成N-甲基吗啉氧化物(NMO)。负载在LDH上的多相双功能催化剂(LDH-OsW)在非手性二羟基化反应中表现出优异的活性,与通过共价键合在树脂(resin-OsW)和二氧化硅(silica-OsW)上的季铵盐进行离子交换制备的其他多相催化剂或均相催化剂相比,能够以更高的产率得到二醇。研究发现,LDH-OsW及其均相类似物在使用H2O2对多种芳香族、环状以及单取代、二取代和三取代烯烃进行同时不对称二羟基化(AD)-N-氧化反应时非常高效,能够以更高的产率和对映体过量值(ee)得到手性邻二醇。此外,使用OsO4(2-)-WO4(2-)催化剂本身或其负载形式为催化剂循环提供了简化的程序,该程序在多个循环中表现出一致的活性。在此过程中,基于NMO-WO4(由H2O2通过耦合电子转移-介质(ETM)系统将Os(VI)循环至Os(VIII),从而实现温和且选择性的电子转移。手性二醇的一锅法仿生合成由一种可循环使用的三功能多相催化剂(LDH-PdOsW)介导,该催化剂由嵌入单一基质中的活性钯、钨和锇物种组成。该方案分别通过Heck偶联和NMM的N-氧化原位提供前手性烯烃和NMO,这是AD反应所必需的,展现了一种低成本的合成方法。我们将本方法扩展至通过二取代烯烃的原位Heck芳基化得到的三取代烯烃的AD反应,实现了一锅法合成具有中等至优异ee值的三取代手性邻二醇。多相三功能催化剂在手性肉桂酸酯的AD反应中提供了前所未有的ee值和优异的产率,该手性肉桂酸酯首次由丙烯酸酯和卤代苯原位得到。新的变体,如多相多组分体系中固有组成的LDH载体和Et3N*HX,以及缓慢加入H2O2,有助于单乙醇酸锇酯的水解,抑制双乙醇酸酯的形成,从而实现更高的ee值。无需重结晶,由此合成的ee值为99%且无锇污染的肉桂酸酯手性二醇可直接用于地尔硫卓和紫杉醇侧链的合成,总体产率提高,证明了三功能多相催化剂的合成实用性。与均相锇体系相比,多相锇催化剂的高结合能力使得在AD反应中能够使用等摩尔比的配体与锇,从而获得优异的ee值,而在均相锇体系中,总是使用过量摩尔量的昂贵手性配体与锇。此外,XRD、FT-IR、UV-vis DRS和XPS研究表明,在离子交换过程中以及反应后,锚定在LDH基质上的特定二价阴离子以其单体形式保留了配位几何结构。