Suppr超能文献

分子内脱氢狄尔斯-阿尔德反应中的环状丙二烯中间体:标记与理论环化芳构化研究

Cyclic allene intermediates in intramolecular dehydro Diels-Alder reactions: labeling and theoretical cycloaromatization studies.

作者信息

Rodríguez David, Navarro-Vázquez Armando, Castedo Luis, Domínguez Domingo, Saá Carlos

机构信息

Departamento de Química Orgánica y Unidad Asociada al CSIC, Facultad de Química, Universidad de Santiago de Compostela, 15782 Santiago de Compostela, Spain.

出版信息

J Org Chem. 2003 Mar 7;68(5):1938-46. doi: 10.1021/jo0265380.

Abstract

A comprehensive theoretical and experimental investigation of dehydro Diels-Alder reactions examining the evolution of the cyclic allene intermediates under conditions for intramolecular and ionic and radical intermolecular cycloaromatization processes is reported. Theoretical calculations showed that the most favored intramolecular path for cycloaromatization of 1,2,4-cyclohexatriene 4 and its benzoannulated derivative 14, strained cyclic allenes, consists of a pair of successive [1,2] H shifts rather than a [1,5] shift. Cycloaromatization of cyclic allenes may follow both inter- and intramolecular pathways, depending on the experimental conditions (use of protic or aprotic solvents). For synthetic purposes, the best procedure is to use a protic solvent to promote the ionic intermolecular route, the fastest and highest yielding. When the reaction is carried out in CCl4, intermolecular radical addition of chlorine to the cyclic allene competes with intramolecular aromatization paths. Theoretical calculations predict a low barrier for the reaction of cyclic allenes with carbon tetrachloride, and that the cyclic allenes act as nucleophiles in this reaction.

摘要

本文报道了对脱氢狄尔斯-阿尔德反应的全面理论和实验研究,考察了在分子内、离子型和自由基型分子间环化芳构化过程条件下环状丙二烯中间体的演变。理论计算表明,对于1,2,4-环己三烯4及其苯并稠合衍生物14(张力环状丙二烯)的环化芳构化,最有利的分子内途径是一对连续的[1,2]氢迁移,而不是[1,5]迁移。环状丙二烯的环化芳构化可能遵循分子间和分子内途径,这取决于实验条件(使用质子性或非质子性溶剂)。出于合成目的,最佳方法是使用质子性溶剂来促进离子型分子间途径(最快且产率最高)。当反应在四氯化碳中进行时,环状丙二烯与氯的分子间自由基加成与分子内环化芳构化途径相互竞争。理论计算预测环状丙二烯与四氯化碳反应的能垒较低,并且环状丙二烯在该反应中充当亲核试剂。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验