Bethge Wolfgang A, Wilbur D Scott, Storb Rainer, Hamlin Donald K, Santos Erlinda B, Brechbiel Martin W, Fisher Darrell R, Sandmaier Brenda M
Clinical Research Division, Fred Hutchinson Cancer Research Center, Seattle, WA 98109, USA.
Blood. 2003 Jun 15;101(12):5068-75. doi: 10.1182/blood-2002-12-3867. Epub 2003 Feb 27.
Two major immunologic barriers, the host-versus-graft (HVG) and graft-versus-host (GVH) reactions, have to be overcome for successful allogeneic hematopoietic cell transplantation. T cells were shown to be primarily involved in these barriers in the major histocompatibility complex identical setting. We hypothesized that selective ablation of T cells using radioimmunotherapy together with postgrafting immunosuppression would suffice to ensure stable allogeneic engraftment. We had described a canine model of nonmyeloablative marrow transplantation in which host immune reactions were impaired by a single dose of 200 cGy total body irradiation (TBI), and both GVH and residual HVG reactions were controlled by postgrafting immunosuppression with mycophenolate mofetil (MMF) and cyclosporine (CSP). Here, we substituted the alpha-emitter bismuth-213 (213Bi) linked to a monoclonal antibody (mAb) against T-cell receptor (TCR) alphabeta, using the metal-binding chelate diethylenetriaminepentaacetic acid (DTPA) derivative cyclohexyl-(CHX)-A", for 200 cGy TBI. Biodistribution studies using a gamma-emitting indium-111-labeled anti-TCRalphabeta mAb showed uptake primarily in blood, marrow, lymph nodes, spleen, and liver. Four dogs were treated with 0.13 to 0.46 mg/kg TCRalphabeta mAb labeled with 3.7 to 5.6 mCi/kg (137-207 MBq/kg) 213Bi. The treatment was administered in 6 injections on days -3 and -2 followed by transplantation of dog leukocyte antigen-identical marrow on day 0 and postgrafting immunosuppression with MMF/CSP. The therapy was well tolerated except for elevations of transaminases that were transient in all but one of the dogs. No other organ toxicities or signs of graft-versus-host disease were noted. The dogs had prompt allogeneic hematopoietic engraftment and achieved stable mixed donor-host hematopoietic chimerism with donor contributions ranging from 5% to 55% after more than 30 weeks of follow up.
为成功进行异基因造血细胞移植,必须克服两个主要的免疫屏障,即宿主抗移植物(HVG)反应和移植物抗宿主(GVH)反应。在主要组织相容性复合体相同的情况下,T细胞被证明主要参与这些屏障。我们假设,使用放射免疫疗法选择性清除T细胞并结合移植后免疫抑制足以确保稳定的异基因植入。我们曾描述过一种非清髓性骨髓移植的犬模型,其中通过单次200 cGy全身照射(TBI)削弱宿主免疫反应,GVH反应和残余的HVG反应均通过移植后使用霉酚酸酯(MMF)和环孢素(CSP)进行免疫抑制来控制。在此,我们用与抗T细胞受体(TCR)αβ单克隆抗体(mAb)连接的α发射体铋 - 213(213Bi)替代200 cGy TBI,该抗体使用金属结合螯合剂二乙三胺五乙酸(DTPA)衍生物环己基 - (CHX) - A”。使用发射γ射线的铟 - 111标记的抗TCRαβ mAb进行的生物分布研究表明,摄取主要发生在血液、骨髓、淋巴结、脾脏和肝脏中。4只犬接受了0.13至0.46 mg/kg标记有3.7至5.6 mCi/kg(137 - 207 MBq/kg)213Bi的TCRαβ mAb治疗。在第 - 3天和第 - 2天分6次注射进行治疗,随后在第0天移植犬白细胞抗原相同的骨髓,并在移植后使用MMF/CSP进行免疫抑制。除了一只犬外,所有犬的转氨酶均有短暂升高外,该治疗耐受性良好。未观察到其他器官毒性或移植物抗宿主病的迹象。这些犬迅速实现了异基因造血植入,并在随访超过30周后实现了稳定的混合供体 - 宿主造血嵌合体,供体贡献范围为5%至55%。