Suppr超能文献

听觉皮层中感觉编码的似然性方法。

Likelihood approaches to sensory coding in auditory cortex.

作者信息

Jenison Rick L, Reale Richard A

机构信息

Departments of Psychology and Physiology, Waisman Center University of Wisconsin-Madison, 1202 W Johnson Street, Madison, WI 53706, USA.

出版信息

Network. 2003 Feb;14(1):83-102.

Abstract

Likelihood methods began their evolution in the early 1920s with R A Fisher, and have developed into a rich framework for inferential statistics. This framework offers tools for the analysis of the differential geometry of the full likelihood function based on observed data. We examine likelihood functions derived from inverse Gaussian (IG) probability density models of cortical ensemble responses of single units. Specifically, we investigate the problem of sound localization from the observation of an ensemble of neural responses recorded from the primary (Al) field of the auditory cortex. The problem is framed as a probabilistic inverse problem with multiple sources of ambiguity. Observed and expected Fisher information are defined for the IG cortical ensemble likelihood functions. Receptive field functions of multiple acoustic parameters are constructed and linked to the IG density. The impact of estimating multiple acoustic parameters related to the direction of a sound is discussed, and the implications of eliminating nuisance parameters are considered. We examine the degree of acuity afforded by a small ensemble of cortical neurons for locating sounds in space, and show the predicted patterns of estimation errors, which tend to follow psychophysical performance.

摘要

似然方法始于20世纪20年代初R·A·费希尔的研究,并已发展成为一个丰富的推断统计框架。该框架提供了基于观测数据对全似然函数的微分几何进行分析的工具。我们研究了从单个单元的皮质集合反应的逆高斯(IG)概率密度模型导出的似然函数。具体而言,我们从听觉皮质初级(A1)场记录的神经反应集合的观测中研究声音定位问题。该问题被构建为一个具有多个模糊源的概率逆问题。为IG皮质集合似然函数定义了观测和期望的费希尔信息。构建了多个声学参数的感受野函数,并将其与IG密度联系起来。讨论了估计与声音方向相关的多个声学参数的影响,并考虑了消除干扰参数的含义。我们研究了一小群皮质神经元在空间中定位声音时所提供的敏锐程度,并展示了预测的估计误差模式,这些模式往往遵循心理物理学表现。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验