Nguyen David P, Frank Loren M, Brown Emery N
Neuroscience Statistics Research Laboratory, Department of Anesthesia , Massachusetts General Hospital, Division of Health Sciences, Harvard Medical School/Massachusetts Institute of Technology, Boston, MA 02114, USA.
Network. 2003 Feb;14(1):61-82. doi: 10.1088/0954-898x/14/1/304.
Multi-electrode recordings in neural tissue contain the action potential waveforms of many closely spaced neurons. While we can observe the action potential waveforms, we cannot observe which neuron is the source for which waveform nor how many source neurons are being recorded. Current spike-sorting algorithms solve this problem by assuming a fixed number of source neurons and assigning the action potentials given this fixed number. We model the spike waveforms as an anisotropic Gaussian mixture model and present, as an alternative, a reversible-jump Markov chain Monte Carlo (MCMC) algorithm to simultaneously estimate the number of source neurons and to assign each action potential to a source. We derive this MCMC algorithm and illustrate its application using simulated three-dimensional data and real four-dimensional feature vectors extracted from tetrode recordings of rat entorhinal cortex neurons. In the analysis of the simulated data our algorithm finds the correct number of mixture components (sources) and classifies the action potential waveforms with minimal error. In the analysis of real data, our algorithm identifies clusters closely resembling those previously identified by a user-dependent graphical clustering procedure. Our findings suggest that a reversible-jump MCMC algorithm could offer a new strategy for designing automated spike-sorting algorithms.
神经组织中的多电极记录包含许多紧密排列的神经元的动作电位波形。虽然我们可以观察到动作电位波形,但我们无法观察到哪个神经元是哪个波形的来源,也无法观察到正在记录的源神经元有多少个。当前的尖峰分类算法通过假设源神经元的数量固定并在这个固定数量的基础上分配动作电位来解决这个问题。我们将尖峰波形建模为一个各向异性高斯混合模型,并提出一种可逆跳跃马尔可夫链蒙特卡罗(MCMC)算法作为替代方案,以同时估计源神经元的数量并将每个动作电位分配给一个源。我们推导了这种MCMC算法,并使用模拟的三维数据和从大鼠内嗅皮层神经元的四通道记录中提取的真实四维特征向量来说明其应用。在对模拟数据的分析中,我们的算法找到了正确数量的混合成分(源),并以最小的误差对动作电位波形进行分类。在对真实数据的分析中,我们的算法识别出的聚类与之前通过用户依赖的图形聚类程序识别出的聚类非常相似。我们的研究结果表明,可逆跳跃MCMC算法可以为设计自动尖峰分类算法提供一种新策略。