Suppr超能文献

非线性耗散系统中的界面模式形成

Interface pattern formation in nonlinear dissipative systems.

作者信息

Trivedi Rohit, Liu Shan, Williams Scott

机构信息

Metals and Ceramics Sciences, Ames Laboratory (US-DOE) and Department of Materials Science and Engineering, Iowa State University, Ames, Iowa 50011, USA.

出版信息

Nat Mater. 2002 Nov;1(3):157-9. doi: 10.1038/nmat749.

Abstract

The problem of interface pattern selection in nonlinear dissipative systems is critical in many fields of science, occurring in physical, chemical and biological systems. One of the simplest pattern formations is the Saffman-Taylor finger pattern that forms when a viscous fluid is displaced by a less viscous fluid. Such finger-shaped patterns have been observed in distinctly different fields of science (hydrodynamics, combustion and crystal growth) and this has led to a search for a unified concept of pattern formation, as first proposed by the classic work of D'arcy Thomson. Two-dimensional finger-shaped patterns, observed in flame fronts and the ensembled average shape of the diffusion-limited aggregation pattern, have been shown to be similar to Saffman-Taylor finger shapes. Here we present experimental studies that establish that the cell shapes formed during directional solidification of alloys can be described by the form of the Saffman-Taylor finger shape equation when a second phase is present in the intercellular region.

摘要

非线性耗散系统中的界面模式选择问题在许多科学领域都至关重要,出现在物理、化学和生物系统中。最简单的模式形成之一是萨夫曼-泰勒指状模式,当一种粘性较小的流体驱替粘性较大的流体时就会形成这种模式。这种指状模式已在截然不同的科学领域(流体动力学、燃烧和晶体生长)中被观察到,这促使人们寻找一种统一的模式形成概念,正如达西·汤姆森的经典著作首次提出的那样。在火焰前沿以及扩散限制聚集模式的集合平均形状中观察到的二维指状模式,已被证明与萨夫曼-泰勒指状形状相似。在此,我们展示了实验研究结果,这些研究表明,当细胞间区域存在第二相时,合金定向凝固过程中形成的细胞形状可以用萨夫曼-泰勒指状形状方程的形式来描述。

相似文献

1
Interface pattern formation in nonlinear dissipative systems.
Nat Mater. 2002 Nov;1(3):157-9. doi: 10.1038/nmat749.
2
The formation of spikes in the displacement of miscible fluids.
Ann N Y Acad Sci. 2004 Nov;1027:311-6. doi: 10.1196/annals.1324.025.
5
Manipulation of the Saffman-Taylor instability: a curvature-dependent surface tension approach.
Phys Rev E Stat Nonlin Soft Matter Phys. 2013 Jan;87(1):013017. doi: 10.1103/PhysRevE.87.013017. Epub 2013 Jan 23.
6
Fluid mixing from viscous fingering.
Phys Rev Lett. 2011 May 13;106(19):194502. doi: 10.1103/PhysRevLett.106.194502. Epub 2011 May 12.
7
Pattern formation mechanisms in reaction-diffusion systems.
Int J Dev Biol. 2009;53(5-6):673-81. doi: 10.1387/ijdb.072484vv.
8
Saffman-Taylor problem on a sphere.
Phys Rev E Stat Nonlin Soft Matter Phys. 2001 Mar;63(3 Pt 2):036307. doi: 10.1103/PhysRevE.63.036307. Epub 2001 Feb 27.
9
Vortex core identification in viscous hydrodynamics.
Philos Trans A Math Phys Eng Sci. 2005 Aug 15;363(1833):1937-48. doi: 10.1098/rsta.2005.1620.
10
Interfacial pattern formation in confined power-law fluids.
Phys Rev E Stat Nonlin Soft Matter Phys. 2014 Jul;90(1):013013. doi: 10.1103/PhysRevE.90.013013. Epub 2014 Jul 18.

引用本文的文献

1
Helical crack-front instability in mixed-mode fracture.
Nature. 2010 Mar 4;464(7285):85-9. doi: 10.1038/nature08862.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验