Suppr超能文献

前馈同步:时间模式沿视网膜丘脑皮质通路的传播。

Feed-forward synchronization: propagation of temporal patterns along the retinothalamocortical pathway.

作者信息

Neuenschwander Sergio, Castelo-Branco Miguel, Baron Jerome, Singer Wolf

机构信息

Max-Planck-Institut für Hirnforschung, Deutschordenstrasse 46, 60528 Frankfurt am Main, Germany.

出版信息

Philos Trans R Soc Lond B Biol Sci. 2002 Dec 29;357(1428):1869-76. doi: 10.1098/rstb.2002.1172.

Abstract

Visual responses in the cortex and lateral geniculate nucleus (LGN) are often associated with synchronous oscillatory patterning. In this short review, we examine the possible relationships between subcortical and cortical synchronization mechanisms. Our results obtained from simultaneous multi-unit recordings show strong synchronization of oscillatory responses between retina, LGN and cortex, indicating that cortical neurons can be synchronized by oscillatory activity relayed through the LGN. This feed-forward synchronization mechanism operating in the 60 to 120 Hz frequency range was observed mostly for static stimuli. In response to moving stimuli, by contrast, cortical synchronization was independent of oscillatory inputs from the LGN, with oscillation frequency in the range of 30 to 60 Hz. The functional implications of synchronization of activity from parallel channels are discussed, in particular its significance for signal transmission and cortical integration processes.

摘要

皮层和外侧膝状体核(LGN)中的视觉反应通常与同步振荡模式相关。在这篇简短的综述中,我们研究了皮层下和皮层同步机制之间可能的关系。我们通过同步多单元记录获得的结果表明,视网膜、LGN和皮层之间的振荡反应存在强烈同步,这表明皮层神经元可以通过经LGN传递的振荡活动实现同步。这种在前瞻性同步机制在60至120赫兹频率范围内运行,主要在静态刺激下观察到。相比之下,对于移动刺激,皮层同步独立于来自LGN的振荡输入,振荡频率在30至60赫兹范围内。我们讨论了来自平行通道的活动同步的功能意义,特别是其对信号传输和皮层整合过程的重要性。

相似文献

1
Feed-forward synchronization: propagation of temporal patterns along the retinothalamocortical pathway.
Philos Trans R Soc Lond B Biol Sci. 2002 Dec 29;357(1428):1869-76. doi: 10.1098/rstb.2002.1172.
2
Synchronization of visual responses between the cortex, lateral geniculate nucleus, and retina in the anesthetized cat.
J Neurosci. 1998 Aug 15;18(16):6395-410. doi: 10.1523/JNEUROSCI.18-16-06395.1998.
4
Retinal and Nonretinal Contributions to Extraclassical Surround Suppression in the Lateral Geniculate Nucleus.
J Neurosci. 2017 Jan 4;37(1):226-235. doi: 10.1523/JNEUROSCI.1577-16.2016.
5
Corticothalamic interactions in the transfer of visual information.
Philos Trans R Soc Lond B Biol Sci. 2002 Dec 29;357(1428):1739-52. doi: 10.1098/rstb.2002.1170.
6
Gamma and infra-slow oscillations shape neuronal firing in the rat subcortical visual system.
J Physiol. 2018 Jun;596(11):2229-2250. doi: 10.1113/JP275563. Epub 2018 Apr 24.
8
Correlational structure of spontaneous neuronal activity in the developing lateral geniculate nucleus in vivo.
Science. 1999 Jul 23;285(5427):599-604. doi: 10.1126/science.285.5427.599.

引用本文的文献

1
Auditory evoked delta brushes involve stimulus-specific cortical networks in preterm infants.
iScience. 2025 Mar 27;28(5):112313. doi: 10.1016/j.isci.2025.112313. eCollection 2025 May 16.
2
Beyond awareness: the binding of reflexive mechanisms with the conscious mind: a perspective from default space theory.
Front Hum Neurosci. 2024 Dec 12;18:1520138. doi: 10.3389/fnhum.2024.1520138. eCollection 2024.
3
On the Functional Role of Gamma Synchronization in the Retinogeniculate System of the Cat.
J Neurosci. 2023 Jul 12;43(28):5204-5220. doi: 10.1523/JNEUROSCI.1550-22.2023. Epub 2023 Jun 16.
5
Effects of high-frequency stimulation of the internal pallidal segment on neuronal activity in the thalamus in parkinsonian monkeys.
J Neurophysiol. 2016 Dec 1;116(6):2869-2881. doi: 10.1152/jn.00104.2016. Epub 2016 Sep 28.
6
Spatial and temporal proximity as factors in shape recognition.
Behav Brain Funct. 2007 Jun 5;3:27. doi: 10.1186/1744-9081-3-27.
7
Beta- and gamma-frequency coupling between olfactory and motor brain regions prior to skilled, olfactory-driven reaching.
Exp Brain Res. 2007 Jun;180(2):217-35. doi: 10.1007/s00221-007-0850-2. Epub 2007 Feb 2.

本文引用的文献

2
The action of light on the eye: Part III. The interaction of retinal neurones.
J Physiol. 1928 Jun 24;65(3):273-98. doi: 10.1113/jphysiol.1928.sp002475.
3
Receptive fields, binocular interaction and functional architecture in the cat's visual cortex.
J Physiol. 1962 Jan;160(1):106-54. doi: 10.1113/jphysiol.1962.sp006837.
4
STATISTICAL ANALYSIS OF THE DARK DISCHARGE OF LATERAL GENICULATE NEURONES.
J Physiol. 1964 Apr;170(3):598-612. doi: 10.1113/jphysiol.1964.sp007352.
5
OSCILLATORY POTENTIALS IN THE VISUAL SYSTEM OF CATS AND MONKEYS.
J Physiol. 1963 Aug;168(1):205-18. doi: 10.1113/jphysiol.1963.sp007187.
6
Spike timing and visual processing in the retinogeniculocortical pathway.
Philos Trans R Soc Lond B Biol Sci. 2002 Dec 29;357(1428):1729-37. doi: 10.1098/rstb.2002.1157.
7
Oscillatory neuronal synchronization in primary visual cortex as a correlate of stimulus selection.
J Neurosci. 2002 May 1;22(9):3739-54. doi: 10.1523/JNEUROSCI.22-09-03739.2002.
8
Dynamic predictions: oscillations and synchrony in top-down processing.
Nat Rev Neurosci. 2001 Oct;2(10):704-16. doi: 10.1038/35094565.
9
Modulation of oscillatory neuronal synchronization by selective visual attention.
Science. 2001 Feb 23;291(5508):1560-3. doi: 10.1126/science.1055465.
10
Human cortical muscle coherence is directly related to specific motor parameters.
J Neurosci. 2000 Dec 1;20(23):8838-45. doi: 10.1523/JNEUROSCI.20-23-08838.2000.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验