Suppr超能文献

初级视皮层和外侧膝状体的同步记录揭示了γ 波段振荡的节律相互作用和皮质源。

Simultaneous recordings from the primary visual cortex and lateral geniculate nucleus reveal rhythmic interactions and a cortical source for γ-band oscillations.

机构信息

Centers for Neuroscience, Mind and Brain, Ernst Strüngmann Institute for Neuroscience in Cooperation with Max Planck Society, 60528 Frankfurt, Germany.

Centers for Neuroscience, Department of Physiology and Neurobiology, Geisel School of Medicine at Dartmouth, Lebanon, New Hampshire 03756, and.

出版信息

J Neurosci. 2014 May 28;34(22):7639-44. doi: 10.1523/JNEUROSCI.4216-13.2014.

Abstract

Oscillatory synchronization of neuronal activity has been proposed as a mechanism to modulate effective connectivity between interacting neuronal populations. In the visual system, oscillations in the gamma-frequency range (30-100 Hz) are thought to subserve corticocortical communication. To test whether a similar mechanism might influence subcortical-cortical communication, we recorded local field potential activity from retinotopically aligned regions in the lateral geniculate nucleus (LGN) and primary visual cortex (V1) of alert macaque monkeys viewing stimuli known to produce strong cortical gamma-band oscillations. As predicted, we found robust gamma-band power in V1. In contrast, visual stimulation did not evoke gamma-band activity in the LGN. Interestingly, an analysis of oscillatory phase synchronization of LGN and V1 activity identified synchronization in the alpha (8-14 Hz) and beta (15-30 Hz) frequency bands. Further analysis of directed connectivity revealed that alpha-band interactions mediated corticogeniculate feedback processing, whereas beta-band interactions mediated geniculocortical feedforward processing. These results demonstrate that although the LGN and V1 display functional interactions in the lower frequency bands, gamma-band activity in the alert monkey is largely an emergent property of cortex.

摘要

神经元活动的振荡同步已被提议作为调节相互作用的神经元群体之间有效连接的机制。在视觉系统中,伽马频带(30-100Hz)的振荡被认为支持皮质间的通信。为了测试类似的机制是否可能影响皮质下-皮质通信,我们记录了警觉猕猴在观看已知会产生强烈皮质伽马带振荡的刺激时,在外侧膝状体核(LGN)和初级视觉皮层(V1)中排列整齐的视网膜区域的局部场电位活动。正如预测的那样,我们在 V1 中发现了强大的伽马带功率。相比之下,视觉刺激并没有在 LGN 中引发伽马带活动。有趣的是,对 LGN 和 V1 活动的振荡相位同步分析确定了在 alpha(8-14Hz)和 beta(15-30Hz)频段中的同步。对定向连接的进一步分析表明,alpha 频段的相互作用介导了皮质膝状体的反馈处理,而 beta 频段的相互作用介导了视放射状的前馈处理。这些结果表明,尽管 LGN 和 V1 在较低频段显示出功能相互作用,但警觉猴的伽马带活动在很大程度上是皮质的一个涌现性质。

相似文献

2
Synchronization of visual responses between the cortex, lateral geniculate nucleus, and retina in the anesthetized cat.
J Neurosci. 1998 Aug 15;18(16):6395-410. doi: 10.1523/JNEUROSCI.18-16-06395.1998.
3
A fast, reciprocal pathway between the lateral geniculate nucleus and visual cortex in the macaque monkey.
J Neurosci. 2007 May 16;27(20):5431-6. doi: 10.1523/JNEUROSCI.1035-07.2007.
6
Relationship between cortical state and spiking activity in the lateral geniculate nucleus of marmosets.
J Physiol. 2017 Jul 1;595(13):4475-4492. doi: 10.1113/JP273569. Epub 2017 Mar 10.
7
Dynamic communication of attention signals between the LGN and V1.
J Neurophysiol. 2018 Oct 1;120(4):1625-1639. doi: 10.1152/jn.00224.2018. Epub 2018 Jul 5.
8
Achromatic temporal-frequency responses of human lateral geniculate nucleus and primary visual cortex.
Vision Res. 2016 Oct;127:177-185. doi: 10.1016/j.visres.2016.09.001. Epub 2016 Sep 12.
9
Contribution of the Pulvinar and Lateral Geniculate Nucleus to the Control of Visually Guided Saccades in Blindsight Monkeys.
J Neurosci. 2021 Feb 24;41(8):1755-1768. doi: 10.1523/JNEUROSCI.2293-20.2020. Epub 2020 Dec 18.
10
Orientation tuning of surround suppression in lateral geniculate nucleus and primary visual cortex of cat.
Neuroscience. 2007 Nov 23;149(4):962-75. doi: 10.1016/j.neuroscience.2007.08.001. Epub 2007 Aug 9.

引用本文的文献

2
Measuring the neurodevelopmental trajectory of excitatory-inhibitory balance via visual gamma oscillations.
Imaging Neurosci (Camb). 2025 Apr 6;3. doi: 10.1162/imag_a_00527. eCollection 2025.
3
Origin of visual experience-dependent theta oscillations.
Curr Biol. 2025 Jan 6;35(1):87-99.e6. doi: 10.1016/j.cub.2024.11.015. Epub 2024 Dec 9.
4
The gamma rhythm as a guardian of brain health.
Elife. 2024 Nov 20;13:e100238. doi: 10.7554/eLife.100238.
5
Thalamocortical interactions shape hierarchical neural variability during stimulus perception.
iScience. 2024 May 23;27(7):110065. doi: 10.1016/j.isci.2024.110065. eCollection 2024 Jul 19.
6
Mechanism of an Intrinsic Oscillation in Rat Geniculate Interneurons.
bioRxiv. 2024 Jun 8:2024.06.06.597830. doi: 10.1101/2024.06.06.597830.
7
Optogenetic activation of visual thalamus generates artificial visual percepts.
Elife. 2023 Oct 4;12:e90431. doi: 10.7554/eLife.90431.
8
On the Functional Role of Gamma Synchronization in the Retinogeniculate System of the Cat.
J Neurosci. 2023 Jul 12;43(28):5204-5220. doi: 10.1523/JNEUROSCI.1550-22.2023. Epub 2023 Jun 16.
10
Gamma rhythms in the visual cortex: functions and mechanisms.
Cogn Neurodyn. 2022 Aug;16(4):745-756. doi: 10.1007/s11571-021-09767-x. Epub 2021 Dec 22.

本文引用的文献

1
Thalamocortical mechanisms for the anteriorization of α rhythms during propofol-induced unconsciousness.
J Neurosci. 2013 Jul 3;33(27):11070-5. doi: 10.1523/JNEUROSCI.5670-12.2013.
2
Attention enhances synaptic efficacy and the signal-to-noise ratio in neural circuits.
Nature. 2013 Jul 25;499(7459):476-80. doi: 10.1038/nature12276. Epub 2013 Jun 26.
3
Robust gamma coherence between macaque V1 and V2 by dynamic frequency matching.
Neuron. 2013 May 8;78(3):523-36. doi: 10.1016/j.neuron.2013.03.003.
4
Enhanced stimulus-induced gamma activity in humans during propofol-induced sedation.
PLoS One. 2013;8(3):e57685. doi: 10.1371/journal.pone.0057685. Epub 2013 Mar 6.
5
Laminar dependence of neuronal correlations in visual cortex.
J Neurophysiol. 2013 Feb;109(4):940-7. doi: 10.1152/jn.00846.2012. Epub 2012 Nov 28.
6
Canonical microcircuits for predictive coding.
Neuron. 2012 Nov 21;76(4):695-711. doi: 10.1016/j.neuron.2012.10.038.
7
Stochastic generation of gamma-band activity in primary visual cortex of awake and anesthetized monkeys.
J Neurosci. 2012 Oct 3;32(40):13873-80a. doi: 10.1523/JNEUROSCI.5644-11.2012.
8
Attentional stimulus selection through selective synchronization between monkey visual areas.
Neuron. 2012 Sep 6;75(5):875-88. doi: 10.1016/j.neuron.2012.06.037.
9
Laminar analysis of visually evoked activity in the primary visual cortex.
Proc Natl Acad Sci U S A. 2012 Aug 21;109(34):13871-6. doi: 10.1073/pnas.1201478109. Epub 2012 Aug 7.

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验