Becerikli Yaşar, Konar Ahmet Ferit, Samad Tariq
Department of Computer Engineering, Kocaeli University, Izmit, Turkey.
Neural Netw. 2003 Mar;16(2):251-9. doi: 10.1016/S0893-6080(02)00232-0.
The application of neural networks technology to dynamic system control has been constrained by the non-dynamic nature of popular network architectures. Many of difficulties are-large network sizes (i.e. curse of dimensionality), long training times, etc. These problems can be overcome with dynamic neural networks (DNN). In this study, intelligent optimal control problem is considered as a nonlinear optimization with dynamic equality constraints, and DNN as a control trajectory priming system. The resulting algorithm operates as an auto-trainer for DNN (a self-learning structure) and generates optimal feed-forward control trajectories in a significantly smaller number of iterations. In this way, optimal control trajectories are encapsulated and generalized by DNN. The time varying optimal feedback gains are also generated along the trajectory as byproducts. Speeding up trajectory calculations opens up avenues for real-time intelligent optimal control with virtual global feedback. We used direct-descent-curvature algorithm with some modifications (we called modified-descend-controller-MDC algorithm) for the optimal control computations. The algorithm has generated numerically very robust solutions with respect to conjugate points. The adjoint theory has been used in the training of DNN which is considered as a quasi-linear dynamic system. The updating of weights (identification of parameters) are based on Broyden-Fletcher-Goldfarb-Shanno BFGS method. Simulation results are given for an intelligent optimal control system controlling a difficult nonlinear second-order system using fully connected three-neuron DNN.
神经网络技术在动态系统控制中的应用一直受到流行网络架构非动态特性的限制。其中许多困难包括网络规模大(即维度灾难)、训练时间长等。动态神经网络(DNN)可以克服这些问题。在本研究中,智能最优控制问题被视为具有动态等式约束的非线性优化问题,而DNN则作为控制轨迹引导系统。由此产生的算法作为DNN的自动训练器(一种自学习结构)运行,并在显著更少的迭代次数中生成最优前馈控制轨迹。通过这种方式,最优控制轨迹被DNN封装和泛化。随时间变化的最优反馈增益也作为副产品沿轨迹生成。加速轨迹计算为具有虚拟全局反馈的实时智能最优控制开辟了道路。我们使用了经过一些修改的直接下降曲率算法(我们称之为修改后的下降控制器 - MDC算法)进行最优控制计算。该算法在共轭点方面生成了数值上非常稳健的解。伴随理论已用于DNN的训练,DNN被视为一个准线性动态系统。权重的更新(参数识别)基于布罗伊登 - 弗莱彻 - 戈德法布 - 肖诺(BFGS)方法。给出了使用全连接三神经元DNN控制一个困难的非线性二阶系统的智能最优控制系统的仿真结果。