Suppr超能文献

元学习方法在神经网络优化中的应用。

Meta-learning approach to neural network optimization.

机构信息

Department of Computer Science and Engineering, FEE, Czech Technical University, Prague, Czech Republic.

出版信息

Neural Netw. 2010 May;23(4):568-82. doi: 10.1016/j.neunet.2010.02.003. Epub 2010 Feb 20.

Abstract

Optimization of neural network topology, weights and neuron transfer functions for given data set and problem is not an easy task. In this article, we focus primarily on building optimal feed-forward neural network classifier for i.i.d. data sets. We apply meta-learning principles to the neural network structure and function optimization. We show that diversity promotion, ensembling, self-organization and induction are beneficial for the problem. We combine several different neuron types trained by various optimization algorithms to build a supervised feed-forward neural network called Group of Adaptive Models Evolution (GAME). The approach was tested on a large number of benchmark data sets. The experiments show that the combination of different optimization algorithms in the network is the best choice when the performance is averaged over several real-world problems.

摘要

优化神经网络拓扑结构、权重和神经元转移函数对于给定的数据集和问题来说并不是一件容易的事。在本文中,我们主要关注为独立同分布数据集构建最优前馈神经网络分类器。我们将元学习原理应用于神经网络结构和功能优化。我们表明多样性促进、集成、自组织和归纳对于这个问题是有益的。我们将几种不同的神经元类型与不同的优化算法相结合,构建了一个名为 Group of Adaptive Models Evolution (GAME) 的有监督前馈神经网络。该方法在大量基准数据集上进行了测试。实验表明,当在几个实际问题上平均性能时,网络中不同优化算法的组合是最佳选择。

文献检索

告别复杂PubMed语法,用中文像聊天一样搜索,搜遍4000万医学文献。AI智能推荐,让科研检索更轻松。

立即免费搜索

文件翻译

保留排版,准确专业,支持PDF/Word/PPT等文件格式,支持 12+语言互译。

免费翻译文档

深度研究

AI帮你快速写综述,25分钟生成高质量综述,智能提取关键信息,辅助科研写作。

立即免费体验