Arévalo Edward, Mertens Franz G, Gaididei Yuri, Bishop A R
Physikalisches Institut, Universität Bayreuth, D-95440 Bayreuth, Germany.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Jan;67(1 Pt 2):016610. doi: 10.1103/PhysRevE.67.016610. Epub 2003 Jan 28.
We study the nonequilibrium diffusion dynamics of supersonic lattice solitons in a classical chain of atoms with nearest-neighbor interactions coupled to a heat bath. As a specific example we choose an interaction with cubic anharmonicity. The coupling between the system and a thermal bath with a given temperature is made by adding noise, delta correlated in time and space, and damping to the set of discrete equations of motion. Working in the continuum limit and changing to the sound velocity frame we derive a Korteweg-de Vries equation with noise and damping. We apply a collective coordinate approach which yields two stochastic ODEs which are solved approximately by a perturbation analysis. This finally yields analytical expressions for the variances of the soliton position and velocity. We perform Langevin dynamics simulations for the original discrete system which confirm the predictions of our analytical calculations, namely, noise-induced superdiffusive behavior which scales with the temperature and depends strongly on the initial soliton velocity. A normal diffusion behavior is observed for solitons with very low energy, where the noise-induced phonons also make a significant contribution to the soliton diffusion.
我们研究了在与热浴耦合的具有最近邻相互作用的经典原子链中超声晶格孤子的非平衡扩散动力学。作为一个具体例子,我们选择具有立方非谐性的相互作用。通过向离散运动方程组添加在时间和空间上呈δ相关的噪声以及阻尼,使系统与给定温度的热浴之间产生耦合。在连续极限下工作并转换到声速框架,我们推导出了一个带有噪声和阻尼的科特韦格 - 德弗里斯方程。我们应用一种集体坐标方法,该方法产生两个随机常微分方程,通过微扰分析对其进行近似求解。这最终得出了孤子位置和速度方差的解析表达式。我们对原始离散系统进行朗之万动力学模拟,其证实了我们解析计算的预测结果,即噪声诱导的超扩散行为与温度成比例,并且强烈依赖于初始孤子速度。对于能量非常低的孤子,观察到正常扩散行为,其中噪声诱导的声子对孤子扩散也有显著贡献。