Rosso Alberto, Hartmann Alexander K, Krauth Werner
CNRS-Laboratoire de Physique Statistique, Ecole Normale Supérieure, 24, rue Lhomond, 75231 Paris Cedex 05, France.
Phys Rev E Stat Nonlin Soft Matter Phys. 2003 Feb;67(2 Pt 1):021602. doi: 10.1103/PhysRevE.67.021602. Epub 2003 Feb 13.
We compute roughness exponents of elastic d-dimensional manifolds in (d+1)-dimensional embedding spaces at the depinning transition for d=1, em leader,4. Our numerical method is rigorously based on a Hamiltonian formulation; it allows us to determine the critical manifold in finite samples for an arbitrary convex elastic energy. For a harmonic elastic energy (Delta(2) model), we find values of the roughness exponent between the one-loop and two-loop functional renormalization group results, in good agreement with earlier cellular automaton simulations. We find that the Delta(2) model is unstable with respect both to slight stiffening and to weakening of the elastic potential. Anharmonic corrections to the elastic energy allow us to obtain the critical exponents of the quenched Kardar, Parisi, Zhang class.
我们计算了d = 1、2、3、4时,(d + 1)维嵌入空间中弹性d维流形在脱钉转变处的粗糙度指数。我们的数值方法严格基于哈密顿表述;它使我们能够在有限样本中确定任意凸弹性能量的临界流形。对于谐波弹性能量(Delta(2)模型),我们发现粗糙度指数的值介于单圈和双圈泛函重整化群结果之间,与早期的元胞自动机模拟结果吻合良好。我们发现Delta(2)模型对于弹性势的轻微变硬和变弱都是不稳定的。弹性能量的非谐修正使我们能够得到淬火的Kardar、Parisi、Zhang类的临界指数。