Jabrin Samuel, Ravanel Stéphane, Gambonnet Bernadette, Douce Roland, Rébeillé Fabrice
Laboratoire de Physiologie Cellulaire Végétale, Unité Mixte de Recherche 5019 Centre National de la Recherche Scientifique-Commissariat à l'Energie Atomique-Université Joseph Fourier Grenoble I, Département Réponse et Dynamique Cellulaires, France.
Plant Physiol. 2003 Mar;131(3):1431-9. doi: 10.1104/pp.016915.
Tetrahydrofolate (THF) is a central cofactor for one-carbon transfer reactions in all living organisms. In this study, we analyzed the expression of dihydropterin pyrophosphokinase-dihydropteroate synthase (HPPK-DHPS) in pea (Pisum sativum) organs during development, and so the capacity to synthesize dihydropteroate, an intermediate in the de novo THF biosynthetic pathway. During seedling development, all of the examined organs/tissues contain THF coenzymes, collectively termed folate, and express the HPPK-DHPS enzyme. This suggests that each organ/tissue is autonomous for the synthesis of THF. During germination, folate accumulates in cotyledons and embryos, but high amounts of HPPK-DHPS are only observed in embryos. During organ differentiation, folate is synthesized preferentially in highly dividing tissues and in photosynthetic leaves. This is associated with high levels of the HPPK-DHPS mRNA and protein, and a pool of folate 3- to 5-fold higher than in the rest of the plant. In germinating embryos and in meristematic tissues, the high capacity to synthesize and accumulate folate correlates with the general resumption of cell metabolism and the high requirement for nucleotide synthesis, major cellular processes involving folate coenzymes. The particular status of folate synthesis in leaves is related to light. Thus, when illuminated, etiolated leaves gradually accumulate the HPPK-DHPS enzyme and folate. This suggests that folate synthesis plays an important role in the transition from heterotrophic to photoautotrophic growth. Analysis of the intracellular distribution of folate in green and etiolated leaves indicates that the coenzymes accumulate mainly in the cytosol, where they can supply the high demand for methyl groups.
四氢叶酸(THF)是所有生物中一碳转移反应的核心辅因子。在本研究中,我们分析了豌豆(Pisum sativum)发育过程中器官中二氢蝶呤焦磷酸激酶 - 二氢蝶酸合酶(HPPK - DHPS)的表达,以及从头合成THF生物合成途径中间体二氢蝶酸的能力。在幼苗发育过程中,所有检测的器官/组织都含有THF辅酶,统称为叶酸,并表达HPPK - DHPS酶。这表明每个器官/组织在THF合成方面是自主的。在萌发过程中,叶酸在子叶和胚中积累,但仅在胚中观察到大量的HPPK - DHPS。在器官分化过程中,叶酸优先在高度分裂的组织和光合叶片中合成。这与高水平的HPPK - DHPS mRNA和蛋白质相关,并且叶酸池比植物其他部分高3至5倍。在萌发的胚和分生组织中,合成和积累叶酸的高能力与细胞代谢的全面恢复以及对核苷酸合成的高需求相关,核苷酸合成是涉及叶酸辅酶的主要细胞过程。叶片中叶酸合成的特殊状态与光照有关。因此,黄化叶片在光照时会逐渐积累HPPK - DHPS酶和叶酸。这表明叶酸合成在从异养生长向光合自养生长的转变中起重要作用。对绿色和黄化叶片中叶酸的细胞内分布分析表明,辅酶主要积累在细胞质中,在那里它们可以满足对甲基的高需求。