Serwer Philip
Department of Biochemistry, University of Texas Health Science Center, San Antonio, TX 78229-3900, USA.
J Struct Biol. 2003 Mar;141(3):179-88. doi: 10.1016/s1047-8477(02)00628-7.
An ATP-dependent motor drives a DNA genome into a bacteriophage capsid during morphogenesis of double-stranded DNA bacteriophages both in vivo and in vitro. The DNA molecule enters the capsid through a channel in the center of a symmetric protein ring called a connector. Mechanisms in two classes have been proposed for this motor: (1) An ATP-driven rotating connector pulls a DNA molecule via serial power strokes. (2) The connector rectifies DNA motion that is either thermal, biased thermal, or oscillating electrical field-induced (motor-ratchet hypothesis). Mechanisms in the first class have previously been proposed to explain the detailed structure of DNA packaging motors. The present study demonstrates that the motor-ratchet hypothesis also explains the current data, including data in the following categories: biochemical genetics, energetics, structure, and packaging dynamics.
在双链DNA噬菌体的体内和体外形态发生过程中,一种依赖ATP的马达将DNA基因组驱动到噬菌体衣壳中。DNA分子通过一个称为连接体的对称蛋白质环中心的通道进入衣壳。针对这种马达提出了两类机制:(1)ATP驱动的旋转连接体通过连续的动力冲程拉动DNA分子。(2)连接体纠正由热、偏向热或振荡电场诱导的DNA运动(马达棘轮假说)。先前已提出第一类机制来解释DNA包装马达的详细结构。本研究表明,马达棘轮假说也能解释当前的数据,包括以下几类数据:生化遗传学、能量学、结构和包装动力学。