Siebert Hans-Christian, André Sabine, Vliegenthart Johannes F G, Gabius Hans-Joachim, Minch Michael J
Institut für Physiologische Chemie, Tierärztliche Fakultät, Ludwig-Maximilians-Universität München, Veterinärstr. 13, 80539 München, Germany.
J Biomol NMR. 2003 Mar;25(3):197-215. doi: 10.1023/a:1022898428465.
The structural analysis of protein-carbohydrate interactions is essential for the long-range aim to sort out entropic/ enthalpic factors in the binding process. Of conspicuous clinical interest, this work can also offer the perspective to devise new classes of therapeuticals which interfere with disease-related glycan recognition. We have shown that it is possible to use exchangeable hydroxyl protons of carbohydrate ligands as conformational sensors for defining their bound-state topology by measurements in dimethyl sulfoxide(d6) (Siebert et al. (2000) ChemBioChem, 1, 181-195). However, the proteins are required to maintain binding capacity in the aprotic solvent. To define conditions to limit its harmful effect on sensitive protein structures while still being able to pick up solvent-exchangeable hydroxyl signals we systematically tested binary solvent mixtures of dimethyl sulfoxide and acetone with water. These solvent mixtures did not preclude to monitor hydroxyl protons of carbohydrate ligands even at temperatures well above 0 degrees C. Notably, hydrogen bonding of the two tested disaccharides (Galbeta1-4Glcalpha/beta and Galalpha1-3Galalpha/beta or Galalpha1-3Galbeta1-OCH(3)), which are common lectin ligands, resembled the situation under physiological conditions. Also, a refined topological description for hydroxyl positioning could be achieved for Galalpha1-3Gal. At least equally important, this approach worked for elucidation of the mistletoe-lectin-bound topology of lactose in its syn-conformation with indication for formation of a characteristic interresidual hydrogen bond. These measurements were performed in a binary dimethyl sulfoxide(d6):water mixture (6:4 ratio, v/v) at -12 degrees C and encourage to pursue this line of investigation by monitoring in the course of stepwise temperature increases. Our experiments reveal that binary mixtures have favorable properties for the conformational analysis of the free- and bound-state topologies of bioactive ligands.
蛋白质 - 碳水化合物相互作用的结构分析对于梳理结合过程中的熵/焓因素这一长期目标至关重要。这项工作在临床上具有显著的意义,它还能为设计干扰与疾病相关的聚糖识别的新型治疗药物提供思路。我们已经表明,可以利用碳水化合物配体可交换的羟基质子作为构象传感器,通过在二甲亚砜(d6)中进行测量来确定其结合态拓扑结构(西伯特等人,(2000年)《化学生物化学》,第1卷,第181 - 195页)。然而,蛋白质需要在非质子溶剂中保持结合能力。为了确定在限制其对敏感蛋白质结构有害影响的同时仍能检测到溶剂可交换羟基质子信号的条件,我们系统地测试了二甲亚砜与丙酮和水的二元溶剂混合物。这些溶剂混合物即使在远高于0摄氏度的温度下也不妨碍监测碳水化合物配体的羟基质子。值得注意的是,两种测试的二糖(Galβ1 - 4Glcα/β和Galα1 - 3Galα/β或Galα1 - 3Galβ1 - OCH(3)),它们是常见的凝集素配体,其氢键作用类似于生理条件下的情况。此外,对于Galα1 - 3Gal可以实现更精细的羟基定位拓扑描述。至少同样重要的是,这种方法适用于阐明乳糖在其顺式构象中与槲寄生凝集素结合的拓扑结构,并表明形成了特征性的残基间氢键。这些测量是在 - 12摄氏度的二元二甲亚砜(d6):水混合物(体积比6:4)中进行的,并鼓励通过在逐步升温过程中进行监测来继续这一研究方向。我们的实验表明,二元混合物对于生物活性配体的游离态和结合态拓扑结构的构象分析具有有利特性。