Suppr超能文献

Contribution of metabolites to mutagenicity during anaerobic biodegradation of fenitrothion.

作者信息

Matsushita Taku, Matsui Yoshihiko, Ikeba Kazunori, Inoue Takanobu

机构信息

Department of Civil Engineering, Gifu University, 1-1 Yanagido, Gifu, Gifu 501-1193, Japan.

出版信息

Chemosphere. 2003 Jan;50(3):275-82. doi: 10.1016/s0045-6535(02)00500-3.

Abstract

The contribution of fenitrothion and its microbial metabolites to the mutagenicity of a fenitrothion-containing solution was investigated during anaerobic biodegradation. Although a mixed culture of bacteria obtained from a paddy field degraded fenitrothion and reduced its concentration from 4.6 to 0.1 mg/l in 6 days, the indirect mutagenicity of the solution in Salmonella strain YG1029 increased. This increase was found to be partially due to amino-fenitrothion generated during the biodegradation. In addition, other unidentified metabolites contributed to the mutagenicity. In contrast, the indirect mutagenicity in strain YG1042, which was initially large because of fenitrothion, then decreased, and increased again. This increase in mutagenicity was also due to amino-fenitrothion and other unidentified metabolites. The mutagenicity in strains YG1029 and YG1042 decreased after day 6. The greatest contribution of amino-fenitrothion to the mutagenicity was calculated to be 73% and 61% in YG1029 and YG1042 on day 3 of incubation, respectively. That of unidentified metabolites was calculated at 49% and 61% on day 20, respectively. Therefore, because not all the toxic metabolites of a compound can be identified, it is important to evaluate the toxicity of a whole solution in a bioassay such as the Ames assay rather than deducing the toxicity of the solution from the combined toxicities of known metabolites.

摘要

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验