Lopez Mary F, Pluskal Malcolm G
Proteome Systems, 14 Gill St, Woburn, MA 01801, USA.
J Chromatogr B Analyt Technol Biomed Life Sci. 2003 Apr 5;787(1):19-27. doi: 10.1016/s1570-0232(02)00336-7.
The early applications of microarrays and detection technologies have been centered on DNA-based applications. The application of array technologies to proteomics is now occurring at a rapid rate. Numerous researchers have begun to develop technologies for the creation of microarrays of protein-based screening tools. The stability of antibody molecules when bound to surfaces has made antibody arrays a starting point for proteomic microarray technology. To minimize disadvantages due to size and availability, some researchers have instead opted for antibody fragments, antibody mimics or phage display technology to create libraries for protein chips. Even further removed from antibodies are libraries of aptamers, which are single-stranded oligonucleotides that express high affinity for protein molecules. A variation on the theme of protein chips arrayed with antibody mimics or other protein capture ligand is that of affinity MS where the protein chips are directly placed in a mass spectrometer for detection. Other approaches include the creation of intact protein microarrays directly on glass slides or chips. Although many of the proteins may likely be denatured, successful screening has been demonstrated. The investigation of protein-protein interactions has formed the basis of a technique called yeast two-hybrid. In this method, yeast "bait" proteins can be probed with other yeast "prey" proteins fused to DNA binding domains. Although the current interpretation of protein arrays emphasizes microarray grids of proteins or ligands on glass slides or chips, 2-D gels are technically macroarrays of authentic proteins. In an innovative departure from the traditional concept of protein chips, some researchers are implementing microfluidic printing of arrayed chemistries on individual protein spots blotted onto membranes. Other researchers are using in-jet printing technology to create protein microarrays on chips. The rapid growth of proteomics and the active climate for new technology is driving a new generation of companies and academic efforts that are developing novel protein microarray techniques for the future.
微阵列和检测技术的早期应用主要集中在基于DNA的应用上。如今,阵列技术在蛋白质组学中的应用正在迅速发展。众多研究人员已开始开发用于创建基于蛋白质的筛选工具微阵列的技术。抗体分子与表面结合时的稳定性使抗体阵列成为蛋白质组微阵列技术的起点。为了尽量减少因大小和可用性带来的缺点,一些研究人员转而选择抗体片段、抗体模拟物或噬菌体展示技术来创建蛋白质芯片文库。与抗体关系更远的是适体文库,适体是对蛋白质分子具有高亲和力的单链寡核苷酸。与排列有抗体模拟物或其他蛋白质捕获配体的蛋白质芯片主题不同的是亲和质谱,其中蛋白质芯片直接放置在质谱仪中进行检测。其他方法包括直接在载玻片或芯片上创建完整的蛋白质微阵列。尽管许多蛋白质可能会变性,但已证明成功进行了筛选。蛋白质-蛋白质相互作用的研究构成了一种称为酵母双杂交技术的基础。在这种方法中,酵母“诱饵”蛋白可以与融合到DNA结合域的其他酵母“猎物”蛋白进行探测。尽管目前对蛋白质阵列的解释强调在载玻片或芯片上的蛋白质或配体微阵列网格,但二维凝胶在技术上是真实蛋白质的宏观阵列。与传统蛋白质芯片概念不同的是,一些研究人员正在对印在膜上的单个蛋白质斑点进行微流控打印化学阵列。其他研究人员正在使用喷墨打印技术在芯片上创建蛋白质微阵列。蛋白质组学的快速发展和新技术的活跃氛围推动了新一代公司和学术机构的努力,它们正在为未来开发新型蛋白质微阵列技术。