Mohamed Ahmed A, Chen Jinhua, Bruce Alice E, Bruce Mitchell R M, Krause Bauer Jeanette A, Hill David T
Department of Chemistry, The University of Maine, Aubert Hall, Orono, Maine 04469-5706, USA.
Inorg Chem. 2003 Apr 7;42(7):2203-5. doi: 10.1021/ic026057z.
The mechanism of action of auranofin, an antiarthritic gold(I) drug, is unknown, but several studies suggest that oxidation may be important for its biochemical effect. Bulk electrolysis studies on auranofin [(Et(3)P)Au(TATG); TATG = 2,3,4,6-tetraacetyl-1-thio-d-glucopyranosato] at +1.2 and +1.6 V versus Ag/AgCl in 0.1 M Bu(4)NBF(4)/CH(2)Cl(2) results in n values of 0.5 and >2 electrons, respectively. Oxidation of auranofin with the mild oxidant, Cp(2)Fe(+), results in formation of disulfide and a digold(I) cation with a bridging thiolate ligand, (Et(3)PAu)(2)(mu-TATG) (1). The X-ray structure of the PMe(3) analogue, (Me(3)PAu)(2)(mu-TATG) (2), is reported. Compound 2 forms a tetranuclear cluster containing an almost perfect square of four gold atoms with Au.Au distances averaging 3.14 A. The complex crystallizes in the tetragonal space group P4(2)2(1)2 with cell constants a = 26.1758(6) A, b = 26.1758(6) A, c = 9.7781(3) A, alpha = beta = gamma = 90 degrees, V = 6699.7(3) A(3), Z = 4, R1 = 0.0644, and wR2 = 0.1152. A mechanism for oxidation of auranofin and possible biological implications are discussed.