Suppr超能文献

主链灵活性、残基保守性与酶功能的相互依存关系:以β1,4-半乳糖基转移酶-I为例的研究

Interdependence of backbone flexibility, residue conservation, and enzyme function: a case study on beta1,4-galactosyltransferase-I.

作者信息

Gunasekaran K, Ma Buyong, Ramakrishnan B, Qasba Pradman K, Nussinov Ruth

机构信息

Laboratory of Experimental and Computational Biology, NCI-Frederick, Frederick, Maryland 21702, USA.

出版信息

Biochemistry. 2003 Apr 8;42(13):3674-87. doi: 10.1021/bi034046r.

Abstract

Beta1,4-galactosyltransferase-I (beta4Gal-T1) catalyzes the transfer of a galactose from UDP-galactose to N-acetylglucosamine. A recent crystal structure determination of the substrate-bound enzyme reveals a large conformational change, which creates binding sites for the oligosaccharide and alpha-lactalbumin, when compared to the ligand-free structure. The conformational changes take place in a 21-residue-long loop (I345-H365) and in a smaller loop containing a tryptophan residue (W314) flanked by glycines (Y311-G316; Trp loop). A series of molecular dynamics simulations carried out with an implicit solvent model and with explicit water successfully identify flexibility in the two loops and in another interacting loop. These observations are confirmed by limited proteolysis experiments that reveal an intrinsic flexibility of the long loop. The multiple simulation runs starting with the substrate-free structure show that the long loop moves toward its conformation in the ligand-bound structure; however, it gets stabilized in an intermediate position. The Trp loop moves in the opposite direction to that of the long loop, making contacts with residues in the long loop. Remarkably, when the Trp loop is restrained in its starting conformation, no large conformational change takes place in the long loop, indicating residue communication of flexibility. Sequence and structural analysis of the beta4Gal-T1 family with 37 known sequences reveals that in contrast to the unconserved long loop, which undergoes a much larger conformational change, the Trp loop including the glycines is highly conserved. These observations lead us to propose a new functional mechanism that may be conserved by evolution to perform a variety of functions.

摘要

β1,4-半乳糖基转移酶-I(β4Gal-T1)催化将半乳糖从UDP-半乳糖转移至N-乙酰葡糖胺。最近对底物结合型酶的晶体结构测定显示,与无配体结构相比,该酶发生了较大的构象变化,从而形成了寡糖和α-乳白蛋白的结合位点。构象变化发生在一个21个残基长的环(I345-H365)以及一个包含色氨酸残基(W314)且两侧为甘氨酸的较小环(Y311-G316;色氨酸环)中。使用隐式溶剂模型和显式水进行的一系列分子动力学模拟成功识别出这两个环以及另一个相互作用环中的灵活性。有限蛋白水解实验证实了这些观察结果,该实验揭示了长环的内在灵活性。从无底物结构开始的多次模拟运行表明,长环朝着其在配体结合结构中的构象移动;然而,它在中间位置稳定下来。色氨酸环朝着与长环相反的方向移动,与长环中的残基形成接触。值得注意的是,当色氨酸环被限制在其起始构象时,长环中不会发生大的构象变化,这表明残基之间存在灵活性的传递。对具有37个已知序列的β4Gal-T1家族进行的序列和结构分析表明,与经历了更大构象变化的不保守长环不同,包括甘氨酸的色氨酸环高度保守。这些观察结果使我们提出一种新的功能机制,该机制可能通过进化得以保留以执行多种功能。

文献AI研究员

20分钟写一篇综述,助力文献阅读效率提升50倍。

立即体验

用中文搜PubMed

大模型驱动的PubMed中文搜索引擎

马上搜索

文档翻译

学术文献翻译模型,支持多种主流文档格式。

立即体验